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Abstract

An isotropy irreducible variety is a homogeneous affine variety such that the isotropy rep-
resentation is irreducible over C. We study a relation between isotropy irreducible varieties
and nilpotent orbits. If G/H is an isotropy irreducible variety and dimG > 1, then G is semi-
simple, hence its Lie algebra g admits a natural decomposition g = h ⊕ m where h is the Lie
algebra of H and m is an irreducible h-representation. First, we show that the highest weight
orbit Om ⊂ P(m) is an integral submanifold of the natural contact structure of a nilpotent
orbit Zm ⊂ P(g). Next, we focus on the case where Om is a Legendrian submanifold of Zm,
and study the associated Legendre moduli space. As a corollary, for a simple Lie algebra s,
we classify equivariant Legendrian embeddings of rational homogeneous spaces into nilpotent
orbits in P(s). Finally, in the case where Zm is simply connected, we prove that Zm is the leaf
space of an integrable distribution constructed from the contact structure of the projectivized
cotangent bundle PT ∗(G/H).

1 Introduction

We are working over C, the field of complex numbers. Let G/H be a coset variety of a connected
reductive group G and a reductive subgroup H (hence G/H is affine), and assume that G acts
on G/H effectively. For the identity element e ∈ G, let g ∶= TeG and h ∶= TeH be the tangent
algebras. Then we say that the variety G/H is an isotropy irreducible variety of type (g, h) if
the tangent space Te⋅H(G/H) ≃ g/h is an irreducible h-representation (Definition 2.1). In this
case, we also say that the pair (g, h) is an isotropy irreducible pair.

Note that similar definitions also make sense for a coset manifold of compact real Lie groups.
Such real manifolds are called (strongly) isotropy irreducible spaces in the literature, and have
been studied as manifolds carrying canonical invariant Riemannian metrics. Most remarkably,
they are classified by Manturov [11] [13] [12], Wolf [18] and Krämer [8], and a classification of
isotropy irreducible pairs (g, h) in our setting can be deduced from their results (Theorem 2.3).

Geometry of an isotropy irreducible variety G/H is particularly interesting when G/H is
not symmetric. Indeed, the structure of symmetric varieties is now well-understood. We give
constructions of non-symmetric G/H in Example 2.4, which cover all the cases where g is of
classical type.

By the classification of isotropy irreducible pairs (g, h), g is semi-simple whenever dim g > 1.
Thus we assume that g is semi-simple. Then for the Killing form b of g, since h is a reductive
subalgebra, the restriction b∣h on h is non-degenerate. Therefore we have a decomposition
g = h ⊕m for m ∶= {v ∈ g ∶ b(v, h) = 0}, the orthogonal complement of h. Since the restriction
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b∣m on m is also non-degenerate, m is a self-dual h-representation, which is isomorphic to the
isotropy representation g/h.

We investigate a connection between isotropy irreducible varieties and nilpotent orbits (Def-
inition 3.3), which are well-known examples of homogeneous contact manifolds. First, we
associate a nilpotent orbit in P(g) to G/H.

Theorem 1.1. Let (g, h) be an isotropy irreducible pair with dim g > 1. For the highest weight
orbit Om ⊂ P(m), we have the following:

1. Om is an integral submanifold of the natural contact structure of a nilpotent orbit Zm ⊂
P(g).

2. If (g, h) is symmetric, then Om is a Legendrian submanifold of Zm. If (g, h) is not
symmetric, then Om is Legendrian only if it is indicated in Table 1.

3. Assume that g is simple. Then Zm is the minimal nilpotent orbit Zlong ∶= P(Omin) ⊂ P(g)
unless (g, h) is one of (A2l−1, Cl) (l ≥ 2), (Cl, Cp ⊕Cl−p) (1 ≤ p ≤ l − 1), (so(l), so(l − 1))
(l ≥ 5), (F4, B4), (E6, F4), and (B3, G2).

A full list of Zm is given in Remark 7.1 and Table 2-3.

As an immediate corollary, there are rational homogeneous spaces of Picard number 1 which
are not Hermitian symmetric spaces but admit equivariant Legendrian embeddings, namely

OG(3, C9)↪ Zlong ⊂ P(so(16)),
LG(2, C2l)↪ Z[22,12l−4] ⊂ P(sl(2l)) (l > 2),

F4/P1 ↪ Z2A1 ⊂ P(E6).

See Table 1 and Table 3.
We also give a geometric characterization of the case where Om is Legendrian submanifold

of Zlong. Namely, when g is simple, we show that Om is a Legendrian submanifold of Zlong if
and only if Om is the scheme-theoretic intersection of P(m) and Zlong. See Corollary 4.8.

On the other hand, by Theorem 1.1, an isotropy irreducible variety G/H with dim g > 1
comes with a diagram of G-equivariant morphisms

C ∶= G ×H Om

G/H Zm ⊂ P(g).ϕ

ψ (1)

Here, ϕ is the natural projection from the G-principal bundle C = G ×H Om ∶= {(g, z) ∶ g ∈
G, z ∈ Om}/(g, z) ∼ (g ⋅ h−1, h ⋅ z), ∀h ∈H, and ψ is defined as follows: If [g, z] ∈ C is the point
represented by (g, z) ∈ G×Om, we put ψ([g, z]) ∶= g ⋅ z, which is well-defined since z ∈ Om ⊂ Zm

and Zm ⊂ P(g) is an adjoint orbit.
In the case where Om is a Legendrian submanifold of Zm, we show that the diagram (1)

is the diagram associated to a Legendre moduli space (Theorem 5.2) in the sense of Merkulov
[14]. In the following, a Legendrian sub-flag variety of a nilpotent orbit Z means an equivariant
embedding of a rational homogeneous space into Z as a Legendrian submanifold (Definition
5.3).

Theorem 1.2. Let s be a semi-simple Lie algebra, Sad the adjoint group, and Z ⊂ P(s) a
nilpotent orbit. Let O be a Legendrian sub-flag subvariety of Z, and define a coset variety
M ∶= Sad/StabSad(O) and its base point o ∶= e ⋅ StabSad(O). Then the diagram

{(g ⋅ o, z) ∈M ×Z ∶ z ∈ g ⋅O}

M Z

(2)
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equipped with the natural projections defines an analytic family of compact Legendrian subman-
ifolds of Z, which is complete and maximal (see Theorem 5.2). Moreover, if s is simple, then
for a Levi subalgebra l of the Lie algebra of StabSad(O), one of the following holds:

1. M is an isotropy irreducible variety Sad/NSad(l) of type (s, l) and the diagram (2) coin-
cides with the diagram (1) associated to Sad/NSad(l); or

2. M is an irreducible Hermitian symmetric space (of compact type). All possible cases are
listed in Table 4.

In both cases, O is a highest weight orbit of the orthogonal complement of l in s with respect to
the Killing form.

As a corollary of Theorem 1.1 and Theorem 1.2, a classification of Legendrian sub-flag
varieties of nilpotent orbits in projectivized simple Lie algebras follows.

Corollary 1.3. A Legendrian sub-flag variety of a nilpotent orbit in a projectivized simple Lie
algebra is one of Legendrian Om ⊂ Zm in Table 1, Om ⊂ Zm in Table 2-3 and Legendrian O ⊂ Z
in Table 4.

Finally, for arbitrary isotropy irreducible variety G/H with dim g > 1, we show that the
diagram (1) can be recovered from the natural contact structure of the projectivized cotangent
bundle PT ∗(G/H). Indeed, C = G ×H Om can be considered as a subbundle of PT ∗(G/H) ≃
G ×H P(m∗) via the self-duality m ≃ m∗. If we restrict the contact structure of PT ∗(G/H)
over C, then it is no more a contact structure, but instead, it contains null-spaces (Definition
6.1), i.e. the degeneracy loci of the Levi tensor. In the following theorem, we show that in the
diagram (1), ψ defines a foliation compatible with the distribution of null-spaces:

Theorem 1.4. Let G/H be an isotropy irreducible variety of type (g, h) with dim g > 1. Con-
sider the natural contact structure Θ of PT ∗(G/H) (see Example 3.2). Then the morphism
ψ ∶ C → Zm in the diagram (1) satisfies the following properties:

1. Θ ∩ TC = (dψ)−1(D) where D is the contact structure of Zm.

2. The vertical distribution kerdψ on C coincides with the distribution NullΘ∩TC of the null-
spaces of Θ ∩ TC.

3. The leaf space Z̃m of NullΘ∩TC equipped with the quotient morphism ψ̃ ∶ C → Z̃m exists,
provided that either

(a) Zm is simply connected. In this case, Z̃m = Zm and ψ̃ = ψ; or
(b) Zm is not simply connected but G/H is simply connected. In this case, π1(Zm) =

Z/2Z, Z̃m is a universal cover of Zm and ψ is the composition of ψ̃ and the covering
Z̃m → Zm. Furthermore, Z̃m can be constructed as follows:

i. If g is not simple, then g = sp(V )⊕ sp(V ) for a symplectic vector space V , Z̃m is
the complement of P(V ⊕ 0) ∪ P(0⊕ V ) in P(V ⊕ V ), and the covering Z̃m → Zm

is induced by the natural map V → Sym2(V ) ≃ sp(V ), v ↦ v2.

ii. If g is simple, then g can be embedded into a simple Lie algebra s so that Z̃m is
a Zariski open G-orbit in Zlong ⊂ P(s) and the covering map Z̃m → Zm is induced
by the orthogonal projection s↠ g.

The pairs (g, h) with Zm simply connected are given in Proposition 4.1 and Corollary 4.11.
It is interesting to observe a connection between the previous theorems and the classifica-

tion of shared orbit pairs due to Brylinski and Kostant [2] (see also [5, Example 2.7.a]). Here,
a shared orbit pair means a pair (O1, O2) of nilpotent orbits Oi ⊂ gi (i = 1, 2) for reductive Lie
algebras g1 < g2 such that there is a G1-equivariant finite morphism O2 → O1. In fact, by com-
bining the classifications, the exceptions with Zm /= Zlong in Theorem 1.1 can be characterized
as isotropy irreducible pairs (g, h) with g simple and having a shared orbit pair. Also in the
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last part of Theorem 1.4, the simple Lie algebra s is chosen so that the Lie algebras g↪ s have
a shared orbit pair (O ⊂ g, Omin ⊂ s) satisfying P(O) = Zm. See Corollary 4.11.

This paper is organized as follows. In Section 2, we review the classification of isotropy
irreducible pairs. In Section 3, we recall the notion of the contact structure and some properties
of the nilpotent orbits as contact manifolds. In Section 4, we prove Theorem 1.1, by studying
the structure of m case-by-case. In Section 5, we recall the notion of the Legendre moduli
space and Merkulov’s result, and prove Theorem 1.2. In Section 6, we explain how to compute
the null-spaces Lie theoretically, and then prove Theorem 1.4. In Section 7, we summarize the
classification of isotropy irreducible pairs and our classification of Legendrian sub-flag varieties
in four tables. Our numbering of nodes of Dynkin diagrams is also explained, following [15].
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2 Isotropy Irreducible Varieties

We are working in the holomorphic category. For example, every manifold is assumed to be a
complex manifold, unless otherwise stated. A variety means a locally closed subset of an affine
space or a projective space in the Zariski topology.

First, recall the definition and the classification of isotropy irreducible varieties.

Definition 2.1. Let G be a connected reductive group, G/H its coset variety by a reductive
subgroup H, and H0 the identity component of H.

1. We say that G/H is an isotropy irreducible variety of type (TeG, TeH) if the natural
action of G on G/H is effective and the tangent space Te⋅H(G/H) is an irreducible H0-
representation.

2. A pair (g, h) of reductive Lie algebras is called an isotropy irreducible pair if there is an
isotropy irreducible variety G/H with g = TeG and h = TeH.

Proposition 2.2. Let GR be a compact connected real Lie group and HR a closed Lie subgroup.
Assume that G and H be the complexifications of GR and HR, respectively. Then the GR-action
on GR/HR is effective if and only if so is the G-action on G/H.
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Proof. Recall that HR = GR ∩H, and so we can consider GR/HR as a totally real submanifold
of G/H.

Assume that the G-action on G/H is effective. Let g ∈ GR be an element such that g acts
trivially on GR/HR. Since the G-action on G/H is algebraic, the fixed-point-locus of g on
G/H is Zariski closed. Since the fixed-point-locus contains GR/HR, it coincides with the whole
variety G/H, a contradiction.

Assume that the GR-action on GR/HR is effective. Consider a subgroup of G defined by
K ∶= {g ∈ G ∶ g acts on G/H trivially}. Then K is a normal closed subgroup of G and K ∩GR =
{e}. Since G is reductive, so is K. Thus K is the complexification of its maximal compact
subgroup, which is conjugate to a subgroup of K ∩GR = {e}. Hence K = {e}, i.e. the G-action
on G/H is effective.

Now a classification of isotropy irreducible pairs can be deduced from [18]. Indeed, in [18],
there is a classification of closed subgroups HR of a compact connected real Lie group GR
satisfying the following conditions:

1. the GR-action on GR/HR is effective;

2. if gR and hR are Lie algebras of GR andHR, respectively, then gR/hR is an hR-representation
which is irreducible over R; and

3. GR/HR is simply connected.

By Proposition 2.2, our isotropy irreducible pairs (g, h) are corresponding to the complexifica-
tions of (gR, hR) in the classification in [18] such that gR/hR is irreducible over C.
Theorem 2.3 ([18, Theorem 11.1 and Correction]). Let G/H be an isotropy irreducible variety
of type (g, h) with dim g > 0.

1. If G/H is symmetric, that is, there is a holomorphic involution θ ∶ G → G such that h is
the (+1)-eigenspace of deθ, then one of the following holds:

(a) G = C× and H = {e};
(b) g = g0 ⊕ g0 and h = diag(g0) (i.e. h is the diagonal) for some simple Lie algebra g0;

and

(c) g is simple.

2. If G/H is not symmetric, then (g, h) belongs to Table 1. In this case, g is simple, h is
semi-simple and rank(h) < rank(g).

Example 2.4. The following are examples of an embedding h ↪ g which defines a non-
symmetric isotropy irreducible pair (g,h):

1. The adjoint representation h↪ g ∶= so(h) for simple h not of type A ([18, Corollary 10.2]).
In the numbering of Table 1, No. 15n, 19n, 21n, 24, 26, 27, 28 and 29 correspond to the
cases where h is Bn, Cn, Dn, G2, F4, E6, E7 and E8, respectively.

2. Isotropy representations of some rational homogeneous spaces L/P with L simple, P
maximal parabolic and h the semi-simple part of the Lie algebra of P . More precisely,
there is the smallest nonzero P -invariant subspace T1 in Te⋅P (L/P ), and by comparing [9,
Proposition 2.6] and [18, Theorem 11.1 and Correction], we have the following examples:

(a) h↪ g ∶= sl(T1) induced by an irreducible Hermitian symmetric space L/P , neither a
projective space nor a quadric. In this case, T1 = Te⋅P (L/P ). In the numbering of
Table 1, No. 1p, q, 2, 3, 4n and 5n are the cases where L/P is Gr(q, Cp+q), OP2 (the
Cayley plane), E7/P1 (the E7-Hermitian symmetric space), Sn (the Spinor variety),
and LG(n, C2n) (the Lagrangian Grassmannian), respectively.
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(b) h↪ g ∶= sp(T1) induced by an adjoint variety L/P for L not of type A, C (Definition
3.3). In the numbering of Table 1, No. 6, 7, 8, 9, 10 and 11n are the cases where the
Lie algebra of L is G2, F4, E6, E7, E8 and so(n + 4), respectively.

(c) h ↪ g ∶= so(T1) induced by the isotropy representation of LG(2, C2n+4) (n ≥ 3),
the isotropic Grassmannian of a symplectic vector space. Here, dimT1 = 4n (and
codimT1 = 3). This corresponds to No. 30n in Table 1.

In particular, every non-symmetric isotropy pair (g, h) with g of type A or C is obtained
in this way.

3. Complexification of isotropy representations of certain Riemannian symmetric spaces.
Indeed, these cover all non-symmetric (g, h) /= (B3, G2) with g classical, see [16] for
a classification-free proof. For example, the previous examples in the item 2 can be
obtained by taking

(a) the compact presentation of the Hermitian symmetric space L/P ,

(b) the positive quaternionic-Kähler symmetric space of the same type with L, and

(c) the quaternionic projective space HPn,
respectively. See [16, Table 1, 2, 3].

4. The octonion representation h ∶= G2 ↪ B3 =∶ g. This pair is No. 23 in Table 1, and
described in detail in Section 4.3.

From now on, we assume that G/H is an isotropy irreducible variety of type (g, h) with
g non-zero and semi-simple (or equivalently, dim g > 1). Under this assumption, we fix our
notation as follows. Let Gad ∶= G/Z(G) be the adjoint group of G. For the Killing form b of
g, its restriction on h is non-degenerate, and so m ∶= {v ∈ g ∶ b(v, h) = 0} is a complementary
subspace to h in g. That is, g = h⊕m as h-representations. The highest weight orbit is denoted
by Om ⊂ P(m).

Next, we choose a maximal torus TH of the identity component H0 ⊂H with its Lie algebra
tH(≤ h). Then the weight decompositions of h and m are given as follows:

h = tH ⊕ ⊕
α∈Rh

hα, m = m0 ⊕ ⊕
w∈W

mw.

Here, Rh is the set of roots of h and W is the set of nonzero weights of m. For α ∈ Rh and
w ∈W ∪ {0}, Eα ∈ hα − {0} and vw ∈ mw − {0} mean a root vector of h and a weight vector of
m, respectively. We also choose a Borel subgroup BH ⊂H0 containing TH , and its Lie algebra
is written as bH . The highest weight of m (with respect to bH) is denoted by ρ ∈ W so that
Om = H0 ⋅ [vρ] ⊂ P(m). For a simple Lie algebra h1, its simple roots and the highest root are
denoted by αh1

i and δh1 , respectively, indexed as in Section 7, following [15]. If there is no
ambiguity, we often omit the superscript h1. Finally, we choose a maximal toral subalgebra
t ≤ tH ⊕m0. The set of roots of g is also denoted by Rg.

Let us close this section with some observations.

Corollary 2.5. 1. ρ is a root of h if and only if g is not simple or (g, h) is one of (B3, G2),
(A2l−1, Cl) (l ≥ 2), (Dp+1, Bp) (p ≥ 2) and (E6, F4).

2. If g is not simple, then ρ = δ, the highest root of h.

3. If ρ is a root of h and g is simple, ρ is the dominant short root δshort of h.

Proof. This is a direct consequence of Table 1 and the classification of symmetric isotropy
irreducible varieties, which can be found in [17, (8.11.2) and (8.11.5)]. The latter is summarized
in the first two columns of Table 2 and 3.
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Proposition 2.6. 1. h is a maximal subalgebra of g.

2. For the normalizer NGad(h) of h, the coset variety Gad/N is an isotropy irreducible variety
of type (g, h).

3. Under the quotient map G→ Gad, the image of any closed subgroup of G with Lie algebra
h is contained in NGad(h). In particular, there is a G-equivariant finite morphism G/H →
Gad/NGad(h).

Proof. 1. It follows from the irreducibility of g/h.
2. Since the Lie algebra of NGad(h) contains h, it is either h or g. By Theorem 2.3, h < g is

not an ideal, and so its Lie algebra is h. Next, since Gad is the adjoint group and since h
does not contain a simple factor of g, the Gad-action on Gad/NGad(h) is effective.

3. It suffices to observe that every closed subgroup stabilizes its Lie algebra.

Corollary 2.7. The stabilizer StabG(Om) of Om ⊂ P(g) in G is the preimage of NGad(h) under
the quotient map G→ Gad.

Proof. Let N ∶= NGad(h) and N0 its identity component. By Proposition 2.6, it is enough
to show that N stabilizes Om. First, since N stabilizes P(h), P(m) is also N -stable, and so
g ⋅Om ⊂ P(m) for g ∈ N . Since N0 ⋅ (g ⋅Om) = g ⋅ (g−1N0g) ⋅Om = g ⋅ (N0 ⋅Om) = g ⋅Om, g ⋅Om is
a closed N0-orbit, hence equal to Om by the irreducibility of m.

3 Contact Geometry of Nilpotent Orbits

In this section, we recall the notion of the contact structure, and review contact geometry over
nilpotent orbits.

Definition 3.1. Let Z be a manifold, and D ⊂ TZ a holomorphic vector subbundle.

1. The Levi tensor LeviD is a bundle morphism defined as

LeviD ∶
2

⋀D → TZ/D, v ∧w ↦ [v, w] mod D

where v and w are local sections of D and [v, w] denotes the Lie bracket of vector fields.

2. D is called a contact structure of Z if D ⊂ TZ is of corank 1 and LeviDz is a non-degenerate
2-form on the fiber Dz for every z ∈ Z. In this case, Z is called a contact manifold, and
the quotient line bundle L ∶= TZ/D is called the contact line bundle.

3. A submanifold X of a contact manifold Z is called an integral submanifold of the contact
structure if X is everywhere tangent to the contact structure. If furthermore dimZ =
2dimX + 1, we say that X is a Legendrian submanifold of Z.

Note that being a Legendrian submanifold means that its tangent space is a Lagrangian
subspace of the contact structure at each point.

Example 3.2. Let Y be a manifold, and Z ∶= PT ∗Y its projectivized cotangent bundle.
For y ∈ Y , each z ∈ PT ∗y Y ⊂ Z corresponds to a hyperplane Ann(z) ⊂ TyY . If we define a
hyperplane Θz ⊂ TzZ as the preimage of Ann(z) under the differential TzZ → TyY of the
natural projection, then Θ ∶= ⋃z∈Z Θz becomes a contact structure of Z. Moreover, it is well-
known that every Legendrian submanifold of Z can be obtained as the projectivized conormal
bundle of a submanifold of Y .

From now on, we always denote by s a semi-simple Lie algebra, and Sad its adjoint group.
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Definition 3.3. Let N ⊂ s be the cone of nilpotent elements.

1. An Sad-orbit contained in P(N ) is called a nilpotent orbit of s.

2. If s is simple, the Sad-orbit of a long root space in P(s) is called the adjoint variety of s,
and denoted by Zlong.

Theorem 3.4 ([1, Remark 2.3]). Let Z ⊂ P(s) be a nilpotent orbit. Define a hyperplane
subbundle D ⊂ TZ as follows: for each [v] ∈ Z and the stabilizer ns(v) ∶= {w ∈ s ∶ [w, v] ∈ C ⋅ v},
put D[v] ∶= v⊥/ns(v) ⊂ s/ns(v) ≃ T[v]Z where v⊥ means the subspace consisting of elements
orthogonal to v with respect to the Killing form. Then D is an Sad-invariant contact structure
of Z.

Remark 3.5. 1. By a slight abuse of notation, we say that an Sad-orbit in the cone of
nilpotent orbits N ⊂ s is a nilpotent orbit in s. For a nilpotent orbit Z ⊂ P(s), its
preimage O ⊂ s under the projection s∖ {0}→ P(s) is a single nilpotent orbit, since every
Sad-orbit in N is C×-invariant. In this case, we write Z = P(O).

2. If s is simple, then the adjoint variety Zlong is the highest weight orbit of the adjoint
representation s, hence it is a unique closed Sad-orbit in P(s). Similarly, its preimage
Omin ⊂ s under the projection s ∖ {0} → P(s) is the minimal nilpotent orbit, in the sense
that Omin is contained in the closure of every nonzero nilpotent orbit in s.

3. The adjoint varieties are the only known examples of Fano contact manifold. In fact, it
has been conjectured that every Fano contact manifold is isomorphic to an adjoint variety.
We refer to [1] as a reference on this topic.

The following propositions are often useful.

Proposition 3.6. Let Z ⊂ P(s) be a nilpotent orbit. Then its contact line bundle is isomorphic
to OP(s)(1)∣Z .

Proof. Write Z = Sad/K for the stabilizer K of a point, say [v] ∈ Z. Then the tangent bundle
of Z and its contact structure are given by TZ ≃ Sad ×K (s/ns(v)) and D ∶= Sad ×K (v⊥/ns(v)).
Thus L ∶= TZ/D ≃ Sad ×K (s/v⊥). Observe that the Killing form induces a K-equivariant
isomorphism (s/v⊥) ≃ (C ⋅ v)∗, hence

L ≃ Sad ×K (s/v⊥) ≃ Sad ×K (C ⋅ v)∗ ≃ OP(s)(1)∣Z .

Proposition 3.7. Let R ⊂ Sad be a closed Lie subgroup. Let w ∈ s be a nonzero nilpotent
element, and Z ∶= Sad ⋅ [w] ⊂ P(s). Then the R-orbit R ⋅ [w] is an integral submanifold of the
contact structure of Z if and only if w is orthogonal to the Lie algebra of R with respect to the
Killing form of s.

Proof. Recall that the contact structure of Z at [w] is given by w⊥/ns(w) ⊂ s/ns(w) ≃ T[w]Z.
Under this identification, the tangent space of R ⋅ [w] is TeR mod ns(w), and so it is contained
in the contact hyperplane w⊥/ns(w) if and only if TeR ⊂ w⊥. The statement follows since the
contact structure of Z is Sad-invariant.

Corollary 3.8. Let r be a reductive subalgebra of s and R ⊂ Sad the associated connected Lie
subgroup. Suppose that the r-representation s/r does not have a common highest weight with
the adjoint representation r. Then each positive dimensional highest weight R-orbit O in P(s)
outside P(r) is an integral submanifold of the contact structure of a nilpotent orbit. Furthermore
if rank(r) = rank(s), then O is contained in either Zlong or the orbit of short root spaces.
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Proof. Recall the orthogonal decomposition s = r ⊕ r⊥ with respect to the Killing form of s.
Since r⊥(≃ s/r) and r do not share an irreducible factor, every highest weight orbit in P(s) not
contained in P(r) is in fact contained in P(r⊥). Moreover, if rank(r) = rank(s), then the highest
weight orbits must contain a root space of s. Thus by Proposition 3.7, it is enough to show
that every positive dimensional highest weight orbit O ⊂ P(s)∖P(r) is contained in a nilpotent
orbit. To see this, consider a fixed point [v] ∈ O of a Borel subgroup BR of R. If we consider
the decomposition BR = TR ⋅ UR into a maximal torus TR and the unipotent radical UR, then
TR stabilizes the line C ⋅ v(⊂ s), and UR fixes the point v(∈ s). If TR fixes v, then the orbit
R ⋅v(⊂ s) is projective, a contradiction since O is not a point. Thus TR acts on C ⋅v nontrivially,
and by [1, Proposition 2.2], we conclude that v is an nilpotent element.

By a similar argument, we associate a nilpotent orbit to each G/H.

Corollary 3.9. In P(g), Om is an integral submanifold of the contact structure of a nilpotent
orbit Zm.

Proof. Since TH acts non-trivially on mρ, a highest weight vector of m is a nilpotent element
by [1, Proposition 2.2]. If its adjoint orbit is denoted Zm ⊂ P(g), then by Proposition 3.7, Om

is an integrabl submanifold of the contact structure of Zm.

Our notation for nilpotent orbits is as follows. As before, s means a semi-simple Lie algebra,
and Sad is its adjoint group. When s is simple, the Sad-orbit of long (short, respectively) root
spaces is denoted by Zlong ⊂ P(s) (Zshort ⊂ P(s), respectively). For each (g, h), the nilpotent
orbit in Corollary 3.9 containing Om as an integral submanifold is denoted by Zm ⊂ P(g). For
other nilpotent orbits in a projectivized simple Lie algebra, we use the labeling of nilpotent
orbits described in [4]. Here is a brief explanation.

• If s is a simple Lie algebra of classical type, then we consider its realization in terms of
matrices, and label each nilpotent orbit by the Jordan type of matrices lying in the orbit.
That is, if Jd is a (d × d) elementary Jordan matrix

Jd ∶=

⎛
⎜⎜⎜⎜⎜
⎝

0 1
0 1

⋱
1
0

⎞
⎟⎟⎟⎟⎟
⎠

(d ≥ 2), and J1 ∶= (0),

then Z[d1,⋯, dk] denotes a nilpotent orbit whose elements are represented by matrices
conjugate to a Jordan matrix

⎛
⎜⎜⎜
⎝

Jd1
Jd2

⋱
Jdk

⎞
⎟⎟⎟
⎠
, d1 ≥ ⋯ ≥ dk ≥ 1.

For example,

Zlong =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Z[2,1r−1] if s = Ar = sl(r + 1),
Z[2,12r−2] if s = Cr = sp(2r),
Z[22,1n−4] if s = so(n),

and

Zshort = {
Z[22,12r−4] if s = Cr = sp(2r),
Z[3,12r−2] if s = Br = so(2r + 1).

See [4, §5.4].
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• If s is a simple Lie algebra of exceptional type, then we use the Bala-Carter classification,
see [4, Ch. 8]. For example,

Zlong = ZA1 , and Zshort = ZÃ1
.

As another example, when s = E6, for a nilpotent element v ∈ s such that the semi-simple
part of the smallest Levi subalgebra containing v is A1 ⊕ A1, then the nilpotent orbit
Sad ⋅ [v] is denoted by Z2A1 .

4 Structures of the Isotropy Representation: Proof
of Theorem 1.1

In this section, we find Zm for each (g, h), i.e. the nilpotent orbit containing Om.

4.1 The case where g is not simple

First we consider the case where G/H is locally isomorphic to a group variety.

Proposition 4.1. Assume that g is not simple, i.e. g = g0 ⊕ g0 and h = diag(g0) for some
simple Lie algebra g0. Let Omin ⊂ g0 be the minimal nilpotent orbit. Then the following hold:

1. Om = P({(v ⊕ (−v)) ∈ g ∶ v ∈ Omin}) and Zm = P(Omin ⊕ Omin). In particular, Om is a
Legendrian submanifold of Zm.

2. If g0 is not of type C, then Zm is simply connected.

3. If g0 = sp(V ) for a 2r-dimensional symplectic vector space V (r ≥ 1), then π1(Zm) = Z/2Z,
and its universal covering is given by a morphism

Z̃m ∶= P(V ⊕ V ) ∖ (P(V ⊕ 0) ∪ P(0⊕ V )) → Zm

[v ⊕w] ↦ [ν(v)⊕ ν(w)]

where ν ∶ V → Sym2(V ) ≃ g0 is defined by ν(v) ∶= v2.

Proof. Let G0 be the adjoint group of g0 so that Gad = G0 × G0. Then Om and Zm are
homogeneous under the action of diag(G0) and G0 ×G0, respectively.

1. Let Eδ be the highest root vector of g0(≃ h). Then since m = {x ⊕ (−x) ∈ g ∶ x ∈ g0},
Om and Zm contain [Eδ ⊕ (−Eδ)], hence Om = P({(v ⊕ (−v)) ∈ g ∶ v ∈ Omin}) and Zm =
P(Omin ⊕Omin). Thus we have dimOm = dimOmin − 1 and dimZm = 2dimOmin − 1.

2. If g0 is not of type C, then Omin is simply connected by [4, Corollary 6.1.6 and §8.4],
hence so is Zm.

3. Suppose that g0 = sp(V ) as in the statement. Then Sym2(V ) ≃ g0 as g0-representations,
and the restriction of the natural map ν ∶ V → Sym2(V ) ≃ g0, v ↦ v2 defines a 2-to-1
covering ν2 ∶ V ∖ {0} → Omin. Since dimV = 2r ≥ 2, ν2 is a universal covering. Thus a
universal covering of Omin ⊕Omin is given by a 4-to-1 covering

ν2 ⊕ ν2 ∶ (V ∖ {0})⊕ (V ∖ {0})→ Omin ⊕Omin,

which induces a 2-to-1 covering from

P((V ∖ {0})⊕ (V ∖ {0})) = P(V ⊕ V ) ∖ (P(V ⊕ 0) ∪ P(0⊕ V )) = Z̃m

to P(Omin ⊕Omin) = Zm. Finally, since P(V ⊕ 0) ∪ P(0⊕ V ) is of codimension 2r(≥ 2) in
P(V ⊕ V ), the covering Z̃m → Zm is a universal covering.
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4.2 The case where g is simple

Now we consider the case where g is simple. Let us begin with a simple observation.

Proposition 4.2. Assume that ρ is not a root of h (see Corollary 2.5). Then mρ is a root
space of g with respect to t.

Proof. Observe that since the ρ-weight space gρ of g (as a tH -representation) is mρ ⊕ hρ, if ρ
is not a root of h, then mρ = gρ. Since tH ≤ t, a weight space of g as a tH -representation is
generated by root spaces of g. Since gρ is a highest weight space, it is of dimension 1, hence it
coincides with a root space.

Proposition 4.3. Assume that (g, h) is symmetric and g is simple.

1. If (g, h) is different from (A2l−1, Cl) (l ≥ 2), (Dp+1, Bp) (p ≥ 2) and (E6, F4), then Om

is a Legendrian submanifold of Zm. A list of Zm for such (g, h) is given in Table 2 (when
rank(h) = rank(g)) and Table 3 (when rank(h) < rank(g)).

2. If (g, h) is one of (A2l−1, Cl) (l ≥ 2), (Dp+1, Bp) (p ≥ 2) and (E6, F4), then Zm /= Zlong.

Zm for the exceptions are given in Section 4.3.

Proof of Proposition 4.3. First of all, if (g, h) is one of (A2l−1, Cl) (l ≥ 2), (Dp+1, Bp) (p ≥ 2)
and (E6, F4), then since 2dimOm + 1 > dimZlong, Zm /= Zlong

Thus we may assume that (g, h) is different from (A2l−1, Cl) (l ≥ 2), (Dp+1, Bp) (p ≥ 2) and
(E6, F4). We need to find Zm and compare its dimension with dimOm. We use the well-known
classification of symmetric varieties, which can be found in [17, (8.11.2) and (8.11.5)].

If rank(h) = rank(g), then h is a maximal proper reductive subalgebra of maximal rank,
hence (g, h) belongs to the first column of Table 2 (up to conjugacy). Moreover in this case, the
highest weight ρ is indeed a root of g, which can be read off from [17, Theorem 8.10.9] and its
proof. This information is summarized in the second column of Table 2. Since every root space
of g is 1-dimensional, Z = Zlong (Zshort, respectively) if and only if ρ is long (short, respectively),
hence the last column of Table 2 follow. The third column follows from [17, (8.11.2)], and by
comparing the dimension of Om and Z, we conclude that Om is always Legendrian.

Next, assume that rank(h) < rank(g) so that (g, h) belongs to the first column of Table 3.
The second and third columns also follow from [17, (8.11.5)]. By Corollary 2.5, the assumption
implies that ρ is not a root of h, and since g of type ADE, Om ⊂ Zlong by Proposition 4.2. Again
by comparing the dimensions, we conclude that Om is a Legendrian submanifold of Zlong.

Next, we focus on non-symmetric (g, h). Recall that this assumption implies that h is semi-
simple and rank(h) < rank(g) (Theorem 2.3). In particular, since tH ⊕m0 is the centralizer of
tH in g, m0 /= 0. By the irreducibility of m, the h-representation generated by m0 must be equal
to m, so we see that W is contained in the root lattice Z ⋅Rh of h.

Lemma 4.4. For each w ∈ Q ⋅Rh, the Q-vector space spanned by the roots of h, let s(w) ∈ Z be
the sum of the coefficients in its expression with respect to the simple roots of h. If W ⊂ Q ⋅Rh,
then we have the following:

1. tH ⊕m0 ⊕⊕w∈W ∶s(w)=0mw is a reductive subalgebra of g.

2. The vector subspace spanned by bH , ⊕w∈W ∶s(w)>0mw and a Borel subalgebra of tH ⊕m0⊕
⊕w∈W ∶s(w)=0mw containing t is a Borel subalgebra of g.

Proof. 1. It is clear that k0 ∶= tH⊕m0⊕⊕w∈W ∶s(w)=0mw is a subalgebra of g. For algebraicity,
observe that the subspace ⊕w∈W ∶s(w)=0mw is contained in the derived subalgebra [k0, k0].
Thus k0 is generated by the algebraic subalgebras [k0, k0] and tH ⊕ m0, hence k0 is also
algebraic. Then k0 is furthermore reductive since the restriction b∣k0 of the Killing form
is non-degenerate and by [15, Theorem 2, §1, Chapter 4].
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2. Let bk0 be a Borel subalgebra of k0 containing t, and put

b ∶= (bH + bk0)⊕ ⊕
w∈W ∶s(w)>0

mw = uH ⊕ bk0 ⊕ ⊕
w∈W ∶s(w)>0

mw

where uH is the unipotent radical of bH . Then b is a subalgebra of g. Since uH ⊕
⊕w∈W ∶s(w)>0mw is a solvable ideal of b, we see that b is solvable.

To see the maximality of b, let b̃ be a solvable subalgebra of g containing b properly. Since
b contains t, both b and b̃ are generated by root vectors of g. Thus there is a root β ∈ Rg

such that gβ ∖ {0} ⊂ b̃ ∖ b. By its definition, s(β∣tH ) ≤ 0.
• If s(β∣tH ) = 0, then gβ ⊂ k0. Since bk0 is a Borel subalgebra of k0, we have gβ ⊂ b̃∩k0 =

bk0 ≤ b, a contradiction.

• If s(β∣tH ) < 0, then g−β ⊂ b, hence the sl(2)-subalgebra gβ⊕[gβ , g−β]⊕g−β is contained
in b̃, a contradiction.

Therefore b is a Borel subalgebra.

Before we proceed further, let us record another corollary of Table 1.

Corollary 4.5. Assume that (g, h) is not symmetric. In the notation of Lemma 4.4, for the
highest root δh1 of a simple factor h1 of h, we have

• s(ρ) < s(δh1) if (g, h,h1) is one of (B3, G2, G2), (E7, A1 ⊕ F4, F4),
• s(ρ) = s(δh1) if (g, h,h1) is one of (D2n, A1 ⊕ Cn, Cn) (n ≥ 3), (F4, A1 ⊕ G2, G2),
(E6, A2 ⊕G2, G2), (E8, G2 ⊕ F4, F4), and

• s(ρ) > s(δh1) otherwise.
Proposition 4.6. Assume that (g, h) is not symmetric. Then mρ is a long root space of g,
i.e. Zm = Zlong, if and only if (g, h) /= (B3, G2).

The non-symmetric exceptional case (B3, G2) is treated in Section 4.3.

Proof of Proposition 4.6. First of all, if (g, h) = (B3, G2), then Om /⊂ Zlong, since 2dimOm+1 =
11 > dimZlong = 7.

Now we may assume that (g, h) /= (B3, G2). Then mρ is a root space of g with respect to t
by Proposition 4.2 and Corollary 2.5. In particular, if the Dynkin diagram of g is simply laced,
then mρ is a long root space (with respect to t).

For the remaining cases, let b be a Borel subalgebra of g constructed in Lemma 4.4. Note
that for every w ∈W ∪ {0} different from ρ, we have s(w) < s(ρ). Moreover, by Corollary 4.5,
if

• the Dynkin diagram of g is not simply laced, and

• (g, h) /= (F4, A1 ⊕G2),
then s(ρ) > s(δ), hence mρ is b-stable. That is, mρ is the highest root space of g with respect
to b. Therefore mρ is a long root space if (g, h) /= (F4, A1 ⊕G2).

Finally, assume that (g, h) = (F4, A1 ⊕G2). In this case, s(ρ) = s(δ)(= 5) > s(w) for the
highest root δ of the G2 factor and w ∈ (Rh∖{δ})∪(W ∖{ρ}). Moreover, since m is isomorphic
to the tensor product of an irreducible A1-representation and a fundamental G2-representation,
each weight space mw is of dimension 1. Thus if w ∈W ∖Rh, then mw is a root space of g. Now
for k0 ∶= tH ⊕m0 ⊕⊕w∈W ∶s(w)=0mw (as in Lemma 4.4),

[k0, hδ ⊕mρ] = hδ ⊕mρ.
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Let bk0 be a Borel subalgebra of k0 containing t. If [bk0 , mρ] ⊂ mρ, then mρ is stable under the
Borel subalgebra

(bH + bk0)⊕ ⊕
w∈W ∶s(w)>0

mw

of g (Lemma 4.4). If [bk0 , mρ] /⊂ mρ, then bk0 contains the (δ − ρ)-weight space mδ−ρ, which is
a root space since (δ − ρ) /∈ Rh. Then the opposite Borel subalgebra b−k0 ≤ k0 does not contain
mδ−ρ, hence mρ is stable under the Borel subalgebra

(bH + b−k0)⊕ ⊕
w∈W ∶s(w)>0

mw

of g (Lemma 4.4).

In the setting of Proposition 4.6, the dimension of Om is given in Table 1. Note that
Om ⊂ Zlong is not necessarily Legendrian.

Example 4.7. Here are some examples of non-symmetric (g, h) with Om ⊂ Zlong Legendrian.

1. For non-symmetric (g, h) with g = sp(2r), r ≥ 1, Om is always a Legendrian submanifold
of Zlong ≃ P2r−1. Indeed, this is called a subadjoint variety (Example 5.5) in the literature.

2. There are three infinite non-symmetric families withOm ⊂ Zlong Legendrian: (A2p−1, Ap−1⊕
A1) (p ≥ 3), (Cn, A1 ⊕ so(n)) (n ≥ 3), and (D2n, A1 ⊕ Cn) (n ≥ 3). As in Examples
2.4, these are arising from the isotropy representations of Gr(2, Cp+2), Zso(n+4), and
LG(2, C2n+4), respectively. On the other hand, these three families are all possible non-
symmetric (g, h) with g classical and h not simple as proved in [18, Correction].

Before considering the exceptional cases, we show a geometric characterization of the cases
where Om ⊂ Zlong as a Legendrian submanifold.

Corollary 4.8. Assume that g is simple and Zm = Zlong, then the following are equivalent:

1. Om is a Legendrian submanifold of Zlong,

2. for each x ∈ Om, TxZlong ∩ TxP(m) = TxOm in TxP(g), and
3. Om is the scheme-theoretic intersection Zlong ∩sch P(m) in P(g). That is, the ideal sheaf

of Om is the sum of the ideal sheaves of Zlong and P(m) in P(g).

Proof. Assume that Zm = Zlong, i.e. Om ⊂ Zlong. Then the condition (3) implies the condition
(2) by [10, Lemma 5.1]. To see the converse implication (2) ⇒ (3), by the same lemma, it
suffices to show that the condition (2) implies Om = Zlong ∩ P(m) set-theoretically. Consider
the inequalities

dim(T[vρ]Zlong ∩ T[vρ]P(m)) ≥ dim[vρ](Zlong ∩ P(m)) ≥ dimOm

where dim[vρ](Zlong∩P(m)) denotes the maximum among dimensions of irreducible components
of Zlong ∩ P(m) containing [vρ]. Since Om is a unique closed H-orbit in P(m) and Zlong is
compact, it is contained in every irreducible component of Zlong ∩ P(m), hence dim[vρ](Zlong ∩
P(m)) = dim(Zlong ∩ P(m)). Therefore if the condition (2) holds, then dimOm = dim(Zlong ∩
P(m)). Then, since Om is compact and contained in every irreducible component of Zlong∩P(m),
we see that Om = Zlong ∩ P(m) set-theoretically, hence (2) ⇒ (3).

Next, we show the equivalence (1) ⇔ (2). Note that if ρ is a root of h, then by Corollary
2.5, Proposition 4.3 and Proposition 4.6, Zm /= Zlong, a contradiction. Thus the equivalence (1)
⇔ (2) follows from the inclusion T[vρ]Zlong ∩ T[vρ]P(m) ⊃ T[vρ]Om, the inequality

dimZlong + dimP(m) − dim(T[vρ]Zlong + T[vρ]P(m)) = dim(T[vρ]Zlong ∩ T[vρ]P(m)) ≥ dimOm,

and the following lemma.
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Lemma 4.9. Assume that ρ /∈ Rh. Then

dim(T[vρ]Zm + T[vρ]P(m)) = dimm + dimOm

where the sum of the tangent spaces is taken in T[vρ]P(g).

Proof. If we identify T[vρ]P(g) ≃ g/mρ, then

T[vρ]Zm + T[vρ]P(m) = ([g, vρ] +m)/mρ = ( ∑
w∈W

[mw, vρ] +m) /mρ

since [h, vρ] ⊂ m and [m0, mρ] ⊂ mρ (as ρ is not a root of h). For a weight vector vw ∈ mw,
if w = −ρ, then the h-component of [v−ρ, vρ] is nonzero and spans C ⋅ hρ where hρ ∈ tH is the
b∣tH -dual of ρ, i.e. b(hρ, −) = ρ(−) on tH , for the Killing form b of g. If w /= −ρ, then the
h-component of [vw, vρ] is contained in ⊕α∈R+

h
∶α−ρ∈W hα, hence

∑
w∈W

[mw, vρ] +m ⊂ C ⋅ hρ ⊕ ⊕
α∈R+

h
∶α−ρ∈W

hα ⊕m.

To show the converse inclusion, observe that for α ∈ R+h , since ρ + α /∈ W , ρ − α ∈ W
(equivalently, α − ρ ∈ W ) if and only if α is not orthogonal to ρ. Thus the number of α ∈ R+h
such that ρ −α ∈W is equal to dimOm. Furthermore, for α ∈ R+h satisfying ρ −α ∈W , we have
[vρ, E−α] /= 0, and so there is vα−ρ ∈ mα−ρ such that the h-component of [vα−ρ, vρ] is nonzero,
since

b([vα−ρ, vρ], E−α) = b(vα−ρ, [vρ, E−α])
and since b is non-degenerate. Therefore ⊕α∈R+

h
∶α−ρ∈W hα ⊂ ∑w∈W [mw, vρ] +m.

To summarize, we have

T[vρ]Zm + T[vρ]P(m) =
⎛
⎜
⎝
C ⋅ hρ ⊕ ⊕

α∈R+
h
∶α−ρ∈W

hα ⊕m
⎞
⎟
⎠
/mρ,

and its dimension is equal to
(1 + dimOm + dimm) − 1.

4.3 Exceptional Cases

In this section, we consider the exceptions in Proposition 4.3 and Proposition 4.6: (A2l−1, Cl)
(l ≥ 2), (Dp+1, Bp) (p ≥ 2), (E6, F4) (symmetric) and (B3, G2) (non-symmetric). We use their
constructions in terms of diagram folding, which are given in [6, Example 2 and Theorem 5.15,
§5, Ch. X].

First, suppose that (g, h) is one of the exceptional pairs which are symmetric. Consider a
diagram automorphism of order 2 on the Dynkin diagram of g, given by switching nodes as
follows:

• (A2l−1, Cl) (l ≥ 2):

• (Dp+1, Bp) (p ≥ 2):
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• (E6, F4):

By identifying the nodes connected by arrows so that each identified node represents a short
simple root, we obtain the Dynkin diagram of h. Furthermore, it induces an outer involution
of g such that the fixed-point-locus is h, and t is stable under the involution.

To be precise, let us denote simple roots of h and g by αi and βi (labeled as in Section
7). If the nodes corresponding to βi and βj are connected by an arrow and folded to a node
corresponding to αk, then βi∣tH = βj ∣tH = αk. Here is a list of such triples:

• (A2l−1, Cl) (l ≥ 2): βi∣tH = β2l−i∣tH = αi, 1 ≤ i ≤ l − 1.
• (Dp+1, Bp) (p ≥ 2): βp∣tH = βp+1∣tH = αp.
• (E6, F4): βi∣tH = β6−i∣tH = αi, i = 1, 2.
Now we consider the orthogonal decomposition g = h⊕m, which gives gρ = hρ⊕mρ, orthogonal

decomposition of the ρ-weight space (as a tH -representation). In those exceptions, ρ is always
the dominant short root (Corollary 2.5), hence gρ is of dimension 2. It means that gρ is
generated by two root spaces, associated to two roots γ1 and γ2 of g such that γi∣tH = ρ. These
γi are given as follows:

• (A2l−1, Cl) (l ≥ 2): γ1 ∶= β1 +⋯ + β2l−2 and γ2 ∶= β2 +⋯ + β2l−1.
• (Dp+1, Bp) (p ≥ 2): γ1 ∶= β1 +⋯ + βp−1 + βp and γ2 ∶= β1 +⋯ + βp−1 + βp+1.
• (E6, F4): γ1 ∶= β1 + β2 + 2β3 + 2β4 + β5 + β6 and γ2 ∶= β1 + 2β2 + 2β3 + β4 + β5 + β6.
Note that g is of type ADE, and so all of γi is long. It means that mρ is generated by a

linear combination of two long root vectors. By Proposition 4.3, vρ = a1 ⋅Eγ1 +a2 ⋅Eγ2 for some
ai ∈ C×.

• If (g, h) = (A2l−1, Cl) (l ≥ 2), g = sl(2l) is identified with the algebra of traceless matrices.
We may choose t as the subalgebra of the diagonal matrices, and then βi = ϵi − ϵi+1
where ϵi ∶ t → C is the linear functional which assigns the ith entry. The roots of g
are given by ϵi − ϵj (1 ≤ i /= j ≤ 2l), and their root spaces are generated by eij , the
elementary matrix with a unique nonzero entry at the ith row and the jth column. Thus
vρ = a1 ⋅Eγ1 + a2 ⋅Eγ2 = a1e1,2l−1 + a2e2,2l, and it is easy to show that it is conjugate to a
Jordan matrix

⎛
⎜⎜⎜⎜⎜
⎝

J2
J2

J1
⋱

J1

⎞
⎟⎟⎟⎟⎟
⎠

.

Thus [mρ] ∈ Z[2,2,1,⋯,1] = Z[22,12l−4].
• For the case (Dp+1, Bp) (p ≥ 2), we may proceed as in the previous case. Instead, let us

introduce more elementary argument.

Let (g, h) = (so(n+1), so(n)), n ≥ 2. We may consider g as the algebra of skew-symmetric
(n + 1) × (n + 1) matrices, and h as the subalgebra of the first n × n minors. Then the
Killing form of g is given as the trace form, and so the orthogonal complement m of h is
consisting of matrices of form

⎛
⎜⎜⎜⎜⎜
⎝

x1
x2
⋮
xn

−x1 −x2 ⋯ −xn 0

⎞
⎟⎟⎟⎟⎟
⎠

.
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Moreover, as an so(n)-representation, it is isomorphic to the standard one. Thus the
highest weight orbit Om, which is the smooth quadric defined by ∑i x2i = 0, contains an
element

⎛
⎜⎜⎜⎜⎜⎜
⎝

1√
−1
⋮
0

−1 −
√
−1 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

whose Jordan normal form is

⎛
⎜⎜⎜
⎝

J3
J1

⋱
J1

⎞
⎟⎟⎟
⎠
.

Thus Om ⊂ Z[3,1n−2] (which is equal to Zshort when n is even).

• If (g, h) = (E6, F4), then for another root γ0 ∶= β1+β2+2β3+β4+β5+β6 and the reflection
sγ0 with respect to the hyperplane defined by γ0, we have

sγ0(β2) = β2 + γ0 = γ2, sγ0(β4) = β4 + γ0 = γ1.

This shows that Om is contained in the nilpotent orbit containing [a1Eβ4 + a2Eβ2], i.e.
Z2A1 .

Next, assume that (g, h) = (B3, G2), the only non-symmetric exception in Theorem 4.8.
The embedding h ↪ g can be constructed as follows: Put g̃ ∶= D4 and denote its simple roots
by β̃1, ..., β̃4. Consider the automorphisms σ2 and σ3 of g̃ induced by diagram automorphisms

3

4

and , respectively.

Then g and h are fixed-point-loci of σ2 and σ3 in g̃, respectively. Thus we can choose t and tH
so that for the simple roots indexed as in the diagrams

α2α1

and
β1 β2 β3

,

we have
β̃1∣t = β1, β̃2∣t = β2, β̃3∣t = β̃4∣t = β3,

and
β̃2∣tH = α2, β̃1∣tH = β̃3∣tH = β̃4∣tH = α1.

Since ρ = 2α1 + α2, there are exactly two roots of g whose restrictions on tH are equal to ρ,
namely β1 + β2 + β3 and β2 + 2β3. It means that mρ is generated by a1Eβ1+β2+β3 + a2Eβ2+2β3
for some ai ∈ C. In fact, by [4, Remark 5.4.2, Theorem 5.1.2 and Corollary 6.1.4], there are 6
number of nilpotent orbits in P(g)

Z[7], Z[5,12], Z[32,1], Z[3,22], Z[3,14](= Zshort), Z[22,13](= Zlong)

of dimension
17, 15, 13, 11, 9, 7,

respectively. Since Om(≃ Q5) is of dimension 5, Zm /= Zshort, Zlong, hence a1, a2 /= 0. More-
over, since the maximal torus of G acts on P(Eβ1+β2+β3 , Eβ2+2β3) ∖ {[Eβ1+β2+β3], [Eβ2+2β3]}
transitively, it is a subset of Zm.
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Now recall that g = so(7) can be identified with the algebra of skew-symmetric 7×7 matrices.
Following [6, §8, Ch. III], we consider t generated by hi ∶= e2i−1,2i−e2i,2i−1 (1 ≤ i ≤ 3) where eij
denotes the elementary matrix with 1 at the intersection of the ith row and the jth column.
Then the roots are given by ±ϵi (1 ≤ i ≤ 3), ϵi − ϵj (1 ≤ i /= j ≤ 3) and ±(ϵi + ϵj) (1 ≤ i < j ≤ 3)
where ϵi is defined by setting ϵi(hj) = −

√
−1δij . For β1 ∶= ϵ1 − ϵ2, β2 ∶= ϵ2 − ϵ3 and β3 ∶= ϵ3, the

root spaces associated to β1 + β2 + β3(= ϵ1) and β2 + 2β3(= ϵ2 + ϵ3) are generated by matrices

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−
√
−1

−1
√
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −
√
−1

−
√
−1 −1

−1
√
−1√

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

respectively. Therefore Zm contains a point represented by a matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−
√
−1

1 −
√
−1

−
√
−1 −1

−1
√
−1√

−1 1

−1
√
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Its row rank is 4 and its 3rd power is zero, and so Zm = Z[3,22].
In summary:

Proposition 4.10. 1. If (g, h) = (A2l−1, Cl) (l ≥ 2), then Zm = Z[22,12l−4], a nilpotent orbit
of dimension 8l − 9.

2. If (g, h) = (so(n + 1), so(n)) (n ≥ 2), then Zm = Z[3,1n−2], a nilpotent orbit of dimension
2n − 3.

3. If (g, h) = (E6, F4), then Zm = Z2A1 , a nilpotent orbit of dimension 31.

4. If (g, h) = (B3, G2), then Zm = Z[3,22], a nilpotent orbit of dimension 11.
In each case, Zm /= Zlong, and Om ⊂ Zm is Legendrian.

4.4 Summary

Proof of Theorem 1.1. The first item follows from Corollary 3.9. The remaining parts follow
from the full list of Zm, which can be deduced from Proposition 4.1, Proposition 4.3, Proposition
4.6 and Proposition 4.10.

As a corollary, we compute the fundamental group π1(Zm) of Zm.

Corollary 4.11. If g is simple and Zm is not simply connected, then (g, h) is one of (Cl,
Cp ⊕Cl−p) (1 ≤ p ≤ l − 1), (so(l), so(l − 1)) (l ≥ 5), (F4, B4) (symmetric), and (B3, G2) (non-
symmetric). In this case, π1(Zm) = Z/2Z, and its universal cover Z̃m → Zm can be constructed
as follows: g can be embedded into a simple Lie algebra s so that Z̃m is a Zariski open Gad-orbit
in Zlong ⊂ P(s) and the covering map Z̃m → Zm is the restriction of the orthogonal projection
s↠ g.

Proof. If Zm = Zlong, then it is a rational homogeneous space, hence simply connected. By
Theorem 1.1, it suffices to consider the following cases:
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• (A2l−1, Cl) (l ≥ 2): In this case, Zm = Z[22,12l−4]. If l ≥ 3, then it is simply connected by
[4, Corollary 6.1.6]. If l = 2, this pair coincides with (D3, B2) = (so(6), so(5)), which is
considered below.

• (E6, F4): In this case, Zm = Z2A1 , which is simply connected by [4, §8.4 Tables].

• (Cl, Cp ⊕ Cl−p) (1 ≤ p ≤ l − 1), (so(l), so(l − 1)) (l ≥ 5), (F4, B4), and (B3, G2): In
these cases, Zm is Zshort(= Z[22,12l−4]), Z[3,1l−3], Zshort(= ZÃ1

) and Z[3,22], respectively.
Consider a simple Lie algebra

s ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A2l−1 if (g, h) = (Cl, Cp ⊕Cl−p) (1 ≤ p ≤ l − 1),
so(l + 1) if (g, h) = (so(l), so(l − 1)) (l ≥ 5),
E6 if (g, h) = (F4, B4),
B4 if (g, h) = (B3, G2).

For (g, h) /= (B3, G2), consider the standard embedding g ↪ s. If (g, h) = (B3, G2),
consider a non-standard embedding g↪ s defined as the composition B3 ↪D4

σÐ→D4 ↪ B4

of the standard embeddings B3 ↪ D4 and D4 ↪ B4 and the triality σ. If O ⊂ g is the
nilpotent orbit such that PO = Zm and Omin is the minimal nilpotent orbit in s, then
by [5, Proposition 2.12], the orthogonal projection s↠ g induces a finite Gad-equivariant
morphism Omin ↠ O between the closures, which is 2-to-1 over O. This morphism induces
a finite Gad-equivariant morphism

φ ∶ Zlong(= P(Omin) ⊂ P(s))↠ Zm(= (O ∖ {0}/C×) ⊂ P(g)),

which is 2-to-1 over Zm. Furthermore, by the Gad-equivariance, φ
−1(Zm) is a Zariski

open orbit in Zlong. Since nilpotent orbits are contact manifolds and Zm is a union of
nilpotent orbits, the complement of Zm in Zm is of (complex) codimension at least 2.
Thus Zlong ∖ φ−1(Zm) is of codimension at least 2 in Zlong, hence φ−1(Zm) is simply
connected. It means that the restriction φ−1(Zm) → Zm of φ is a universal cover, hence
π1(Zm) = Z/2Z.

For the case where g is not simple, see Proposition 4.1.

5 Legendre Moduli Spaces: Proof of Theorem 1.2

In this section, we recall the notion of Legendre moduli spaces, introduced by Merkulov in [14],
and prove Theorem 1.2.

To state a precise definition, first we recall the construction of the Kodaira map associated
to an analytic family of compact submanifolds, introduced by Kodaira in [7]. Suppose that Z
is a manifold and

X (⊂M ×Z)

M Z
p

q

is a diagram of an analytic family of compact submanifolds of Z. That is, M is a connected
manifold, X is a submanifold of M × Z, and the natural projection p is a proper submersion
with connected fibers. For each t ∈ M , put Xt ∶= q(p−1(t)), the submanifold corresponding
to the point t. Since p is proper, there are finitely many coordinate neighborhoods Ui ⊂ Z,
i ∈ I, say with coordinate functions (w1

i , . . . , w
c
i , z

1
i , . . . , z

d
i ), and a coordinate neighborhood

o ∈ U ⊂M such that
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• Xo ⊂ ⋃i∈I Ui,
• for each t ∈ U and i ∈ I, Xt∩Ui is defined by a system of equations wλi = φλi (t, z1i , . . . , zdi ),
∀λ = 1, . . . , c, and

• for each i ∈ I and λ = 1, . . . , c, φλi is a holomophic function on U×Ui satisfying φλi ∣o×Ui = 0.
Put φi ∶= (φ1

i , . . . , φ
c
i), a vector-valued function. Then for each tangent vector ∂

∂t
∈ ToM ,

a collection { ∂φi
∂t
}i∈I satisfies the cocycle condition for being a global section of the normal

bundle NXo/Z . Now the Kodaira map is defined to be a C-linear map

κ ∶ ToM →H0(Xo, NXo/Z),
∂

∂t
↦ {∂φi

∂t
}
i∈I

.

By the local nature of the Kodaira map, one can prove the following proposition:

Proposition 5.1. Let X → M and X ′ → M ′ be analytic families of compact submanifolds of
manifolds Z and Z′, respectively. Fix two points o ∈M and o′ ∈M ′, and suppose that

1. there is a holomorphic map f ∶M →M ′ with f(o) = o′, and
2. there exists a biholomorphism F ∶ U → U ′ between open neighborhoods of Xo ⊂ Z and
X ′f(o) ⊂ Z′ such that F (Xt) = X ′f(t) for all t ∈M .

Then there is a commutative diagram

ToM H0(Xo, NXo/Z)

Tf(o)M
′ H0(X ′f(o), NX ′

f(o)/Z
′)

κ

dof dF

κ′

where the horizontal arrows are the Kodaira maps.

Now Merkulov’s result can be stated as follows:

Theorem 5.2 ([14, Theorem 1.1]). Let Z be a contact manifold with contact line bundle L.
Assume that X is a compact Legendrian submanifold of Z with H1(X, L∣X) = 0. Then there
exists a manifold M equipped with a diagram

X (⊂M ×Z)

M Z
p

q

of an analytic family of compact Legendrian submanifolds of Z containing X which is

1. complete, i.e. for each t ∈M , the composition of the Kodaira map and the projection

TtM →H0(Xt, NXt/Z)→H0(Xt, L∣Xt)

is an isomorphism; and

2. maximal, i.e. for each t ∈M , if there is another analytic familyM ′ p′←Ð X ′ q
′
Ð→ Z of compact

Legendrian submanifolds of Z with t′ ∈ M ′ satisfying Xt = X ′t′ , then there exist an open
neighborhood t′ ∈ U ′ ⊂M ′ and a holomorphic function f ∶ U ′ →M such that f(t′) = t and
Xf(t′′) = X ′t′′ for all t′′ ∈ U ′.

The manifold M is called the Legendre moduli space associated to X ⊂ Z.
From now on, to prove Theorem 1.2, we focus on Legendrian submanifolds of nilpotent

orbits in P(s). To simplify the notation, we introduce the following definitions:

Definition 5.3. Let Z ⊂ P(s) be a nilpotent orbit and l ⊂ s a reductive subalgebra.
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1. A highest weight l-orbit in P(s) means the highest weight orbit in P(V ) for an irreducible
l-subrepresentation V ⊂ s.

2. If a projective submanifold O ⊂ P(s) is a highest weight l-orbit, we say that O is l-
homogeneous. If furthermore O is contained in Z as a Legendrian submanifold, then we
say that O is an Legendrian l-sub-flag variety of Z.

We often say that O is a Legendrian sub-flag variety of Z if l is not specified in Definition
5.3. That is, a Legendrian sub-flag variety means an equivariant embedding of a rational
homogeneous space as a Legendrian submanifold.

Remark 5.4. If a projective submanifold O of P(s) is homogeneous under the action of a
connected algebraic subgroup of Sad with Lie algebra a, then it is a highest weight aLevi-orbit
where aLevi is a Levi subalgebra of a.

Example 5.5. 1. If s = sl(r + 1), r ≥ 1, then Zlong ≃ PT ∗Pr. The contact structures as
an adjoint variety (Theorem 3.4) and as a projectivized cotangent bundle (Example 3.2)
coincide. If Pd ⊂ Pr is a linear subspace of dimension d, then the projectivized conormal
bundle PN∗Pd/Pr is homogeneous under the action of StabPGL(r+1)(Pd). Thus PN∗Pd/Pr is

a Legendrian (D1 ⊕ sl(d + 1) ⊕ sl(r − d))-sub-flag variety of Zlong. (Here, D1 denotes a
1-dimensional toral subalgebra.) On the other hand, if Qr−1 ⊂ Pr is a smooth quadric
hypersurface, then PN∗Qr−1/Pr(≃ Q

r−1) is a Legendrian so(r + 1)-sub-flag variety of Zlong.

2. For an adjoint variety Zlong ⊂ P(s), the contact hyperplane Do at the base point is a
symplectic vector space. Moreover, the projectivization P(Do) contains highest weight
orbits with respect to the action the isotropy group, and each of them is a Legendrian
submanifold of P(Do). Such a Legendrian sub-flag variety is called a subadjoint variety.
It is well-known that the subadjoint varieties are the only Legendrian sub-flag varieties
of an odd dimensional projective space P2r−1, which is the adjoint variety for s = sp(2r),
r ≥ 1, see [3, Theorem A.5] and the references therein. On the other hand, according to
Table 1, every non-degenerate subadjoint variety can be obtained from a non-symmetric
isotropy irreducible pair.

Proof of Theorem 1.2. Let O be a Legendrian sub-flag variety of a nilpotent orbit Z ⊂ P(s). Let
l be a Levi subalgebra of the Lie algebra of StabSad(O) so that O is l-homogeneous. Consider
the irreducible l-subrepresentation V ⊂ s such that O ⊂ P(V ) is the highest weight orbit. Since
L∣O ≃ OP(V )(1)∣O by Proposition 3.6, by the Bott-Borel-Weil theorem, H0(O, L∣O) ≃ V ∗ while
Hq(O, L∣O) = 0, ∀q ≥ 1. In particular, by Theorem 5.2, there exists the Legendre moduli space
M ′ associated to O.

Next, as in the statement, put o ∶= e ⋅ StabSad(O) ∈M ∶= Sad/StabSad(O), and consider the
diagram

X ∶= {(g ⋅ o, z) ∈M ×Z ∶ z ∈ g ⋅O}

M Z.

In fact, with respect to the Sad-action on M × Z (defined by g ⋅ (m, z) ∶= (g ⋅m, g ⋅ z)), X is a
single orbit containing o ×O, hence a submanifold of M ×Z. Since the morphism X →M is a
principal bundle with fiber ≃ O, the diagram defines an analytic family of compact Legendrian
submanifolds of Z.

To prove that this family is complete and maximal, by homogeneity and by [14, Lemma 2.2],
it is enough to show the completeness at o ∈ M . To see this, consider an open neighborhood
o ∈ U ⊂ M and a map f ∶ U → M ′ with o ↦ [O], induced by the maximality of M ′. Since
Xs /= Xt for s /= t ∈M , f is injective. By Proposition 5.1, we have a commutative diagram
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ToU = ToM

ToM
′ H0(O, NO/Z) H0(O, L∣O) ≃ V ∗

κ
dof

κ′ r

where κ and κ′ are the Kodaira maps, and κ is StabSad(O)-equivariant. In particular, since
V ∗ is an irreducible l-representation, the composition r ○ κ is either zero or surjective. If it is
zero, then since r ○ κ′ is an isomorphism, dof is also zero, which is a contradiction since f is
an injective holomorphic map. Therefore f ∶ U → M ′ is a holomorphic injection of full rank,
hence an open embedding. Thus the family is complete at o ∈M .

Now assume that s is simple. Then the Sad-action on M is effective. Since ToM ≃ V ∗
as an l-representation, we see that the Lie algebra of StabSad(O) acts irreducibly on ToM =
To(Sad/StabSad(O)). It implies that its Lie algebra is a maximal subalgebra of s, hence either
reductive or parabolic. In the former case, l is indeed the Lie algebra of StabSad(O), henceM is
an isotropy irreducible variety of type (s, l). Moreover, we have V = m by Proposition 3.7, and
StabSad(O) = NSad(l) by Corollary 2.7. The diagrams (1) and (2) coincide since an isotropy
group of X is the isotropy group of O(= Om). On the other hand, if StabSad(O) is parabolic,
then M is an irreducible Hermitian symmetric space since it is a rational homogeneous space
whose isotropy representation is irreducible. The rest of the statement follows from the next
proposition.

Proposition 5.6. Assume that s is simple. Let l < s be a maximal proper reductive subalgebra,
and O ⊂ P(s) a highest weight l-orbit not contained in P(l). Assume that rank(l) = rank(s) but
(s, l) is not an isotropy irreducible pair. Then we have the following:

1. s ≃ l⊕ V ⊕ V ∗ for a non-self-dual l-subrepresentation V ⊂ s, not necessarily irreducible.

2. O is a Legendrian submanifold of a nilpotent orbit Z ⊂ P(s) if and only if l is not semi-
simple. In this case, the l-representation V is irreducible, Z = Zlong, the highest weight
orbits O+ ⊂ P(V ) and O− ⊂ P(V ∗) are Legendrian submanifolds of Zlong, and O is one
of them. Furthermore, the Lie algebras of P + ∶= StabSad(O+) and P − ∶= StabSad(O−) are
l⊕ V and l⊕ V ∗, respectively, and Sad/P ± are irreducible Hermitian symmetric spaces.

All possible cases are listed in Table 4.

Proof. Observe that the weights of s (as an l-representation) are roots of s, hence each weight
space is of dimension 1. Thus there are only finitely many highest weight l-orbits, and by
Corollary 3.8, each of them off P(l), including O, is an integral submanifold of Zlong or Zshort.

Recall the classification of maximal proper reductive subalgebras of equal rank, given in
[17, Theorem 8.10.9]. Such subalgebras l < s which are not isotropy irreducible are listed in the
first column of Table 4. Indeed, by [17, Theorem 8.10.9, (8.10.11), (8.10.14), and (8.10.15)],
s = l ⊕ V ⊕ V ∗ for a non-self-dual l-subrepresentation V , and V is irreducible if and only if
(s, l) /= (E8, A4 ⊕ A4). (In fact, if (s, l) = (E8, A4 ⊕ A4), then V is decomposed into two
irreducible factors.) The highest weights of V are given in the second column of Table 4, where
the third column also follows. Note that if a root α of s is a highest weight of V and O is
the corresponding highest weight orbit, then O ⊂ Zlong if α is long, and O ⊂ Zshort if α is
short. Thus we obtain the fourth column. By comparing the dimensions, we determine when
O is Legendrian, as indicated in the fifth column. Finally, observe that when it is Legendrian,
then Z = Zlong, and l⊕ V and l⊕ V ∗ are parabolic subalgebras defining Hermitian symmetric
spaces, as observed in [17, p. 282]. Therefore the last column follows from the classification of
irreducible Hermitian symmetric spaces.

21



6 Distributions of Null-spaces: Proof of Theorem 1.4

Now we prove Theorem 1.4. The key ingredient is the natural contact structure of the projec-
tivized cotangent bundle over G/H (Example 3.2).

Definition 6.1. Let Z be a complex manifold, and D ⊂ TZ a hyperplane distribution. Then
the null-space NullDz at z ∈ Z is defined as the subspace of the fiber Dz consisting of null vectors
with respect to LeviDz , i.e.

NullDz ∶= {v ∈Dz ∶ LeviDz (v, w) = 0, ∀w ∈Dz}.

Lemma 6.2. Let L be a Lie group with Lie algebra l, and K its closed subgroup with Lie
algebra k. Assume that there is an K-invariant subspace d ⊂ l/k, and define a vector subbundle
D ∶= L ×K d ⊂ L ×K (l/k) ≃ T (L/K). For the quotient map p ∶ l → l/k and d̃ ∶= p−1(d), we have
the following:

1. Under the identification Te⋅K(L/K) ≃ l/k, LeviDe⋅K ∶ ⋀2 d→ l/d̃ is given by

LeviDe⋅K(v mod k, w mod k) = [v, w] mod d̃, ∀v, w ∈ d̃.

2. The subspace nulld ∶= {v ∈ d̃ ∶ [v, d̃] ⊂ d̃} is a K-invariant subalgebra of l, containing k.

3. NullD ∶= ⋃x∈L/K NullDx is an integrable vector subbundle of D over L/K, isomorphic to
L ×K (nulld/k).

4. For the connected Lie subgroup K̃ corresponding to nulld, the orbit of e ⋅K is a leaf of
NullD, i.e. a maximal connected integral (immersed) submanifold. In particular, if K ⊂ K̃,
then L/K̃ is the leaf space of NullD and the natural projection L/K → L/K̃ defines the
associated foliation.

Proof. 1. For each g ∈ L, let τg ∶ L/K → L/K be the left translation x↦ g ⋅x. Choose a vector
subspace W ⊂ l such that l = W ⊕ k as vector spaces. Let U be an open neighborhood
of 0 ∈ W such that the exponential map exp ∶ U → L/K, y ↦ exp(y) ⋅ K is an open
embedding. Then for X ∈ l/k, define a (holomorphic) vector field VX on exp(U) ⋅K as
follows: for each x ∈ exp(U) ⋅K and a unique y ∈ U such that x = exp(y) ⋅K,

VX(x) ∶= dτexp(y)(X) ∈ Tx(L/K).

In other words, for a function f on U , we have

(VXf)(x) =
∂

∂t
f(exp(y) exp(tX̃) ⋅K)∣

t=0

where X̃ is a unique element of W satisfying p(X̃) = X and t ∈ C is a holomorphic
parameter.

Claim. For X1, X2 ∈ l/k, we have [VX1 , VX2](e ⋅K) = p([X̃1, X̃2]).

Assume the claim for a moment. Then for X ∈ d, since D is L-invariant, VX is a local
section of D extending X, and so the Levi tensor can be computed by using VX . Thus for
X1, X2 ∈ d, the claim implies LeviDe⋅K(X1, X2) = [X̃1, X̃2] mod d̃, hence the statement
follows.
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Proof of Claim. The Lie bracket of vector fields is defined as [VX1 , VX2]f = VX1VX2f −
VX2VX1f for a function f on exp(U) ⋅K. At the base point e ⋅K, we have

(VX1VX2f)(e ⋅K) =
∂

∂t
(VX2f)(exp(tX̃1) ⋅K)∣

t=0

= ∂2

∂t∂s
f(exp(tX̃1) exp(sX̃2) ⋅K)∣

s=t=0

for holomorphic parameters s and t near 0. From the formula, we see that for the vector
fields X̃+i on L/K generated by X̃i, i.e.

X̃+i (x) ∶=
∂

∂t
exp(tX̃i) ⋅ x∣

t=0

, ∀x ∈ L/K,

we have
[VX1 , VX2](e ⋅K) = [X̃

+
2 , X̃

+
1 ](e ⋅K).

Now observe that for X̃ ∈ l, X̃+(e ⋅K) = p(X̃), and it is well-known that [X̃1, X̃2]+ =
−[X̃+1 , X̃+2 ] (see [6, Theorem 3.4, §4, Ch. II]).

2. For v, w ∈ nulld, we have [v, w] ∈ d̃ by the definition. For X ∈ d̃, since

[[v, w], X] = [[v, X], w] + [v, [w, X]] ∈ [d̃, w] + [v, d̃] ⊂ d̃,

[v, w] ∈ nulld, hence nulld is a subalgebra. The K-invariance follows from the invariance
of d and d̃. Again, since d̃ is K-invariant, nulld contains k.

3. Since D is L-invariant, each element of L sends a null-space to a null-space. Thus we
have NullD ≃ L ×K NullDe⋅K in D. Now by the first statement, we have

NullDe⋅K = {v ∈De⋅K ∶ LeviDe⋅K(v, w) = 0, ∀w ∈De⋅K}
= {v ∈ d̃ ∶ [v, w] ∈ d̃, ∀w ∈ d̃}/k
= nulld/k.

Finally, NullD is an integrable subbundle, since its Levi tensor is identically zero by its
definition.

4. Since NullD is an L-invariant integrable subbundle, L/K is the disjoint union of leaves
of NullD and each element of G sends a leaf to another leaf. Let L be the leaf of NullD

containing e ⋅K. Consider the quotient map π ∶ L → L/K. We claim that π−1(L) is a
Lie subgroup of L. To see this, it is enough to show that it is a subgroup. Suppose that
g, h ∈ π−1(L), i.e. g ⋅K, h ⋅K ∈ L. Note that g ⋅L is a leaf containing g ⋅K, and so g ⋅L = L.
It means g ⋅ h ⋅K ∈ L, hence g ⋅ h ∈ π−1(L). It also means g−1 ⋅L = L, hence g−1 ∈ π−1(L).
Therefore π−1(L) is a Lie subgroup of L, and the orbit of e ⋅K under its action is L.
Moreover, since the orbit of e ⋅K under the action of the Lie subgroup defined by nulld is
an integral submanifold, the tangent algebra of π−1(L) is nulld.

We identify the H-representations m and m∗ via b∣m, the restriction of the Killing form.
Also, G acts on T ∗(G/H) via g ⋅ α ∶= (τg−1)∗(α) (g ∈ G, α ∈ T ∗(G/H), and τg−1 is the left
translation by g−1), which gives an isomorphism PT ∗(G/H) ≃ G ×H P(m∗) ≃ G ×H P(m) over
G/H.

Lemma 6.3. Define C ∶= G ×H Om ⊂ PT ∗(G/H), v∗ρ ∶= b(vρ, −) ∈ m∗ ≃ T ∗e⋅H(G/H), and
d ∶= Θ[v∗ρ]∩T[v∗ρ]C for the contact structure Θ of PT ∗(G/H) described Example 3.2. Let G[vρ] ∶=
{g ∈ G ∶ Adg(vρ) ∈ mρ} and H[vρ] ∶=H ∩G[vρ] be the stabilizers of the point [vρ] ∈ P(g).
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1. C = G ⋅ [v∗ρ] ≃ G/H[vρ], and Θ ∩ TC is a well-defined vector bundle over C, isomorphic to
G ×H[vρ] d.

2. The Lie algebra of G[vρ] is null
d (Lemma 6.2). In particular, for the natural quotient map

ψ ∶ C ≃ G/H[vρ] → G/G[vρ] ≃ Zm, the vertical distribution kerdψ over C coincides with

NullΘ∩TC.

3. Θ ∩ TC = (dψ)−1(D) where D is the contact structure of Zm.

Proof. 1. C is G-homogeneous by its definition. The isomorphism m ≃ m∗ sends vρ to v∗ρ ,
hence C = G ⋅ [v∗ρ] ≃ G/H[vρ].
Next, since Θ and TC are G-invariant, so is Θ ∩ TC. In particular, it is a subbundle of
TC, isomorphic to G ×H[vρ] (Θ[v∗ρ] ∩ T[v∗ρ]C) = G ×H[vρ] d.

2. Put ng(mρ) ∶= {X ∈ g ∶ [X, mρ] ⊂ mρ} and nh(mρ) ∶= ng(mρ) ∩ h, the Lie algebras of G[vρ]
and H[vρ], respectively. Recall that the hyperplane in Te⋅H(G/H) ≃ g/h corresponding
to [v∗ρ] is v⊥ρ/h for v⊥ρ ∶= {X ∈ g ∶ b(X, vρ) = 0}. Thus d ∶= Θ[v∗ρ] ∩ T[v∗ρ]C = v

⊥
ρ/nh(mρ) in

T[v∗ρ]C ≃ g/nh(mρ). Therefore by the invariance of b,

null
d ∶= {X ∈ v⊥ρ ∶ [X, v⊥ρ] ⊂ v⊥ρ}
= {X ∈ g ∶ b(X, vρ) = 0, and b([X, Y ], vρ) = 0, ∀Y ∈ v⊥ρ}
= {X ∈ g ∶ b(X, [Y, vρ]) = 0, ∀Y ∈ v⊥ρ} (∵tH ⊂ v⊥ρ)
= {X ∈ g ∶ [X, vρ] ⊂ C ⋅ vρ} (∵b is non-degenerate)
= ng(mρ).

The second statement follows from Lemma 6.2.

3. Previously, we have seen Θ∩TC = G×H[vρ] (v
⊥
ρ/nh(mρ)). Since D = G×G[vρ] (v

⊥
ρ/ng(mρ)),

the statement follows.

Proof of Theorem 1.4. Consider the natural map ψ ∶ C → Zm. The first two properties follow
from Lemma 6.3. For the statements about the leaf space, first assume that Zm is simply
connected. Then G[vρ] is connected, hence by Lemma 6.2, ψ ∶ C → Zm defines the leaf space of

NullΘ∩TC . Thus we may assume that Zm is not simply connected but G/H is simply connected.
Recall that Om is simply connected, hence so is C. Thus we obtain a G-equivariant morphism
ψ̃ ∶ C → Z̃m to the universal cover of Zm, which is constructed in Proposition 4.1 and Corollary
4.11. As before, since Z̃m is G-homogeneous and its isotropy group is connected, Z̃m is the leaf
space of NullΘ∩TC by Lemma 6.2.

7 Tables

In this section, four tables are given. In Table 1, we recall the classification of (g, h), presented
in [18, Section I.11 and Correction], together with dimension of Om and Zm. In Table 2, Table
3, and Table 4, we collect Legendrian sub-flag varieties of nilpotent orbits, not listed in Table
1.

In the tables, we keep the notation of the previous sections. Namely, if h is simple, then
αi, πi and δ denote its simple root, its fundamental weight, and the highest root, respectively.
For the indexing, we follow the notation of [15]. If h has more than one simple factors and
h1 is one of them, then αh1

i , πh1
i , and δh1 mean a simple root, a fundamental weight, and the

highest root of h1, respectively. To make the tables readable, for a simple Lie algebra which is
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not simply laced, we denote by δshort its dominant short root. In our notation, δ and δshort are
given as follows:

• Ar (r ≥ 1): δ = α1 +⋯ + αr for the indexing

α1 α2 αr−1 αr
.

• Br (r ≥ 2): δ = α1 + 2α2 +⋯ + 2αr and δshort = α1 +⋯ + αr for the indexing

α1 α2 αr−2 αr−1 αr
.

• Cr (r ≥ 2): δ = 2α1 +⋯+ 2αr−1 +αr and δshort = α1 + 2α2 +⋯+ 2αr−1 +αr for the indexing

α1 α2 αr−2 αr−1 αr
.

• Dr (r ≥ 3): δ = α1 + 2α2 +⋯ + 2αr−2 + αr−1 + αr for the indexing

α1 α2 αr−3 αr−2

αr−1

αr

.

• E6: δ = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6 for the indexing

α1

α6

α2 α3 α4 α5.

• E7: δ = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 2α7 for the indexing

α6

α7

α5α4α3α2α1 .

• E8: δ = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8 for the indexing

α7

α8

α6α5α4α3α2α1 .

• F4: δ = 2α1 + 4α2 + 3α3 + 2α4 and δshort = 2α1 + 3α2 + 2α3 + α4 for the indexing

α4α3α2α1

.

• G2: δ = 3α1 + 2α2 and δshort = 2α1 + α2 for the indexing

α2α1

.

Remark 7.1. 1. D1 ∶= so(2) is a 1-dimensional reductive Lie algebra.

2. In the isomorphism D2 ∶= so(4) ≃ A1 ⊕A1, the simple factors are written as A′1 and A′′1 .
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3. In the table of [18, Section I.11 and Correction], our non-symmetric isotropy irreducible
pairs (g,h) are corresponding to (the complexifications of) the rows whose isotropy rep-
resentations are irreducible over C, i.e. diagrams in the column χ are connected. In the
same table, the embedding of h into g is also described, in the column π.

4. For symmetric (g, h) with g simple, Zm is given in Table 2-3. For symmetric (g, h)
with g not simple, then Zm = P(Omin ⊕ Omin) in the notation of Proposition 4.1. For
non-symmetric (g, h) (Table 1), Zm = Zlong if (g, h) /= (B3, G2) (Proposition 4.6) and
Zm = Z[3,22] if (g, h) = (B3, G2) (Proposition 4.10).
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No. (g, h) Highest weight ρ of m = g/h dimOm dimZm Legendrian?

1p, q (p ≥ q ≥ 2, pq > 4) (Apq−1, Ap−1 ⊕Aq−1) π
Ap−1
1 + π

Ap−1
p−1 + π

Aq−1
1 + π

Aq−1
q−1 = δ

Ap−1
+ δAq−1 2p + 2q − 6 2pq − 3 Yes if q = 2

2 (A15, D5) π4 + π5 = δ + α3 + α4 + α5 14 29 Yes
3 (A26, E6) π1 + π5 = δ + α1 + α2 + α3 + α4 + α5 24 51

4n (n ≥ 5) (An(n−1)/2−1, An−1) π2 + πn−2 = δ + α2 +⋯ + αn−2 4n − 12 n2
− n − 3 Yes if n = 5

5n (n ≥ 3) (An(n+1)/2−1, An−1) 2π1 + 2πn−1 = 2δ 2n − 3 n2
+ n − 3

6 (C2, A1) 6π1 = 3δ 1 3 Yes
7 (C7, C3) 2π3 = δ + 2α2 + 2α3 6 13 Yes
8 (C10, A5) 2π3 = δ + α2 + 2α3 + α4 9 19 Yes
9 (C16, D6) 2π5 = δ + α3 + 2α4 + 2α5 + α6 15 31 Yes
10 (C28, E7) 2π1 = δ + 2α1 + 2α2 + 2α3 + 2α4 + α5 + α7 27 55 Yes

11n (n ≥ 3) (Cn, A1 ⊕ so(n)) (if n = 3) 2πA1

1 + 4π
so(3)
1 = δA1

+ 2δso(3) n − 1 2n − 1 Yes

(if n = 4) 2πA1

1 + 2π
A′1
1 + 2π

A′′1
1 = δA1

+ δA
′
1 + δA

′′
1

(if n ≥ 5) 2πA1

1 + 2π
so(n)
1 = δA1

+ δso(n) + αso(n)
1

12 (D10, A3) π1 + 2π2 + π3 = 2δ + α2 6 33
13 (D35, A7) π3 + π5 = δ + α2 + 2α3 + 2α4 + 2α5 + α6 21 133
14 (D8, B4) π3 = δ + α3 + α4 12 25 Yes

15n (n ≥ 2) (so(2n2
+ n), Bn) (if n = 2) π1 + 2π2 = 2δ − α2 (if n = 2) 4 4n2

+ 2n − 7
(if n = 3) π1 + 2π3 = 2δ − α2 (if n ≥ 3) 6n − 10
(if n ≥ 4) π1 + π3 = 2δ − α2

16n (n ≥ 2) (so(2n2
+ 3n), Bn) (if n = 2) 2π1 + 2π2 = 2δ + α1 4n − 4 4n2

+ 6n − 7
(if n ≥ 3) 2π1 + π2 = 2δ + α1

17 (D21, C4) 2π3 = δ + 2α2 + 4α3 + 2α4 12 77
18n (n ≥ 3) (so(2n2

− n − 1), Cn) π1 + π3 = δ + α2 + 2α3 +⋯ + 2αn−1 + αn 6n − 10 4n2
− 2n − 9

19n (n ≥ 3) (so(2n2
+ n), Cn) 2π1 + π2 = 2δ − α1 4n − 4 4n2

+ 2n − 7
20 (D64, D8) π6 = δ + α3 + 2α4 + 3α5 + 4α6 + 2α7 + 2α8 39 249

21n (n ≥ 4) (so(2n2
− n), Dn) (if n = 4) π1 + π3 + π4 = 2δ − α2 6n − 13 4n2

− 2n − 7
(if n ≥ 5) π1 + π3 = 2δ − α2

22n (n ≥ 4) (so(2n2
+ n − 1), Dn) 2π1 + π2 = 2δ + α1 4n − 6 4n2

+ 2n − 9
23 (B3, G2) π1 = δshort 5 11 Yes
24 (D7, G2) 3π1 = 2δ − α2 5 21
25 (D13, F4) π2 = δ + α1 + 2α2 + α3 20 45
26 (D26, F4) π3 = 2δ − α4 20 97
27 (D39, E6) π3 = 2δ − α6 29 149
28 (B66, E7) π5 = 2δ − α6 47 259
29 (D124, E8) π2 = 2δ − α1 83 489

30n (n ≥ 3) (D2n, A1 ⊕Cn) 2πA1

1 + π
Cn

2 = δA1
+ δCn

short 4n − 4 8n − 7 Yes
31 (G2, A1) 10π1 = 5δ 1 5

32 (F4, A1 ⊕G2) 4πA1

1 + π
G2

1 = 2δA1
+ δG2

short 6 15
33 (E6, G2) π1 + π2 = δ + δshort 6 21

34 (E6, A2 ⊕G2) πA2

1 + π
A2

2 + π
G2

1 = δA2
+ δG2

short 8 21
35 (E7, A2) 4π1 + 4π2 = 4δ 3 33

36 (E7, C3 ⊕G2) πC3

2 + π
G2

1 = δC3

short + δ
G2

short 12 33

37 (E7, A1 ⊕ F4) 2πA1

1 + π
F4

1 = δ
A1
+ δF4

short 16 33 Yes

38 (E8, G2 ⊕ F4) πG2

1 + π
F4

1 = δ
G2

short + δ
F4

short 20 57

Table 1: Classification of non-symmetric isotropy irreducible pairs (g,h).
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(g, h) Highest weight ρ of m dimOm ZdimZm
m

as a root of g

(Bl, Dp ⊕Bl−p) (2 ≤ p ≤ l) −αp (if p < l) 2l − 3 (if p < l) Z4l−5
long

(if p = l) 2l − 2 (if p = l) Z4l−3
short

(Cl, Cp ⊕Cl−p) (1 ≤ p ≤ l − 1) −αp 2l − 3 Z4l−3
short

(Dl, Dp ⊕Dl−p) (2 ≤ p ≤ l − 2) −αp 2l − 4 Z4l−7
long

(G2, A1 ⊕A1) −α2 2 Z5
long

(F4, C3 ⊕C1) −α4 7 Z15
long

(F4, B4) −α1 10 Z21
short

(E6, A5 ⊕A1) one of −α2, −α4, −α6 10 Z21
long

(E7, A7) −α7 16 Z33
long

(E7, D6 ⊕A1) one of −α2, −α6 16 Z33
long

(E8, D8) −α7 28 Z57
long

(E8, E7 ⊕A1) −α1 28 Z57
long

Table 2: Highest weight orbits for isotropy irreducible pairs (g, h) of equal rank.

(g, h) Highest weight ρ of m dimOm ZdimZm
m

(Al−1, so(l)) (l ≥ 4) (if l = 4) 2π
A′1
1 + 2π

A′′1
1 l − 2 Z2l−3

long

(if l ≥ 5) 2π
so(l)
1

(A2l−1, Cl) (l ≥ 2) π2 = δshort 4l − 5 Z8l−9
[22,12l−4]

(Dp+q+1, Bp ⊕Bq) (p + q ≥ 2, p ≥ q ≥ 0) (if q > 0) π
Bp

1 + π
Bq

1 (if q > 0) 2p + 2q − 2 (if q > 0) Z4p+4q−3
long

(if q = 0) π
Bp

1 = δshort (if q = 0) 2p − 1 (if q = 0) Z4p−1
[3,12p−1]

(E6, F4) π1 = δshort 15 Z31
2A1

(E6, C4) π4 10 Z21
long

Table 3: Highest weight orbits for symmetric isotropy irreducible pairs (g, h) of different rank.

(s, l) Highest weights of V dimO ZdimZ Legendrian? Sad/P
±

as roots of s

(Al, Ap−1 ⊕Al−p ⊕D1) (1 ≤ p ≤ l) −αp l − 1 Z2l−1
long Yes Gr(p, Cl+1

)

(Bl, Bl−1 ⊕D1) (l ≥ 3) −α1 2l − 3 Z4l−5
long Yes Q2l−1

(Cl, Al−1 ⊕D1) (l ≥ 2) −αl l − 1 Z2l−1
long Yes LG(l, C2l

)

(Dl, Dl−1 ⊕D1) (l ≥ 4) −α1 2l − 4 Z4l−7
long Yes Q2l−2

(Dl, Al−1 ⊕D1) (l ≥ 4) one of −αl−1, −αl 2l − 4 Z4l−7
long Yes Sl

(G2, A2) −α1 2 Z7
short

(F4, A2 ⊕A2) −α3 4 Z15
long

(E6, A2 ⊕A2 ⊕A2) −α3 6 Z21
long

(E6, D5 ⊕D1) one of −α1, −α5 10 Z21
long Yes OP2

(E7, A2 ⊕A5) one of −α3, −α5 10 Z33
long

(E7, E6 ⊕D1) −α1 16 Z33
long Yes E7/P1

(E8, E6 ⊕A2) −α2 18 Z57
long

(E8, A8) −α8 20 Z57
long

(E8, A4 ⊕A4) −α4, −(α3 + 2α4 + 2α5 + α6 + α8) 8 Z57
long

Table 4: Highest weight orbits for maximal proper reductive subalgebras l < s of equal rank but not
isotropy irreducible.
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