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초 록

본 학위논문에서는 수반 다양체 상의 이차곡선과, 그의 매개변수공간을 다룬다. 단순 리대수 g가 주어지면,
그에 대한 단일 연결 리군 G는 수반 다양체 Zg ⊂ P(g)에 자연스럽게 작용하며, 이는 Zg의 접촉 구조를

보존한다. 본 논문에서는 먼저 Zg 상의 트위스터 이차곡선, 즉 접촉 구조에 접하지 않는 이차곡선의 공간은
G가 추이적으로 작용하는 대칭 공간임을 증명한다. 이는 Zg 상의 이차곡선 공간이 구형임을 의미하므로,
이후에는 뤼나-뷔스트 이론을 통해 콤팩트화된 이차곡선 공간, 특히 힐베르트 스킴, 차우 스킴, 그리고 완
비이차곡선 공간을 연구한다. 본 논문의 주요 결과는, 앞서 소개된 콤팩트화된 공간의 기하를 결정하는
조합론적 정보, 즉 뤼나-뷔스트 이론에서의 채색된 부채꼴을 계산한 것이다.

후반부에서는 주요 정리의 응용을 다룬다. 먼저 G의 작용에 대한 이차곡선의 궤도 및 켤레류를 분류

하며, 특히 G2-수반 다양체에서는 매끄러운 이차곡선이 접촉 구조에 접할 수 없음을 증명한다. 그후에는
힐베르트 스킴이 매끄러움을 증명하고, 마지막으로 힐베르트 스킴 상의 최소 유리 곡선을 Zg 상의 이차곡선

을 이용해 묘사한다.

핵 심 낱 말 리군, 수반 다양체, 이차곡선, 뤼나-뷔스트 이론, 구형 다양체, 힐베르트 스킴

Abstract
For a simple Lie algebra g, we study spaces of conics on the adjoint variety Zg ⊂ P(g). First, we prove
that for the simply connected Lie group G associated to g, the space of twistor conics, i.e. smooth conics
transverse to the contact distribution D of Zg, is a homogeneous G-symmetric variety. In particular, this
implies that the space of smooth conics on Zg is a G-spherical variety. Then we apply Luna-Vust theory
for spherical varieties to three compactifications of the space of smooth conics: the Hilbert scheme Hg,
the Chow scheme Cg, and the space CoCg of complete conics. Our main result is the computation of
the colored fans of the three compactifications.

Next, we present several applications of the main result. Namely, the conjugacy classes of conics on
Zg with respect to the natural G-action are explicitly described. Especially, we show that the G2-adjoint
variety does not contain a smooth conic tangent to the contact distribution. We also prove smoothness
of the normalized Hilbert scheme Hnor

g . Finally, we interpret minimal rational curves on Hnor
g in terms

of conics on Zg.

Keywords Lie group, adjoint variety, conic, Luna-Vust theory, spherical variety, Hilbert scheme
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Chapter 1. Introduction

We are working over C, the field of complex numbers. Let g be a simple Lie algebra, and G the associated
simply connected Lie group. Then G naturally acts on g via the adjoint representation. Moreover, in
the projectivization P(g), there exists a unique closed G-orbit Zg, called the adjoint variety of g.

By its definition, the adjoint variety Zg ⊂ P(g) coincides with the projectivization of the minimal
nonzero nilpotent orbit in g. It is well-known that a nilpotent orbit O in g is equipped with a G-invariant
symplectic structure (the so-called Kirillov-Kostant-Souriau structure). Thus its projectivization Z ∶= PO
admits a contact distribution, that is, a hyperplane subbundle D of the tangent bundle TZ such that
the Lie bracket of vector fields induces a bundle morphism

2
⋀D → TZ/D (quotient line bundle)

which is everywhere non-degenerate.
In particular, the adjoint variety Zg can be viewed as a rational homogeneous space equipped with an

invariant contact distribution. In fact, Boothby [4] shows that the adjoint varieties are the only rational
homogeneous spaces admitting invariant contact structures. For this reason, the adjoint varieties are
often called homogeneous contact manifolds. Moreover, the adjoint varieties are the only known examples
of Fano contact manifolds, and it has been conjectured that every Fano contact manifold is isomorphic
to one of the adjoint varieties (the so-called LeBrun-Salamon conjecture; see [2]).

On the other hand, since the adjoint variety Zg is a rational homogeneous space, it is covered a
large family of rational curves, i.e. non-constant images of P1. Then it is natural to study a connection
between the contact distribution of Zg and geometry of rational curves on Zg. For example, it is known
that if a rational curve on Zg is not tangent to the contact distribution, then its degree, with respect to
the embedding into P(g), must be at least 2.

Motivated by these facts, we study conics, i.e. rational curves of degree 2 on Zg ⊂ P(g), and their
parameter spaces. Before stating our main theorems, we recall related results.

1.1 State of the Art

1.1.1 Rational Curves on Rational Homogeneous Spaces

As noted before, the adjoint variety Zg contains a lot of rational curves. Among them, geometry of
lines, i.e. rational curves of degree 1, is well-understood. Namely, Hwang [15] proves that if Zg /≃ PN and
/≃ PT ∗PN , then tangent directions of lines passing through a point o ∈ Zg form a homogeneous Legendrian
submanifold of P(Do) where D is the contact distribution of Zg. Using this, Hwang shows that under
the same assumption, Zg is rigid under Fano deformation.

More generally, Landsberg and Manivel [23] study linear subspaces on rational homogeneous spaces.
Indeed, Landsberg and Manivel give a recipe to construct parameter spaces of linear subspaces on rational
homogeneous spaces. (Such a parameter space is called a Fano variety/scheme in literature, while we do
not use this terminology to avoid a confusion with a manifold whose anti-canonical bundle is ample.) In
particular, the description of the space of lines on the adjoint variety Zg is recovered.

1



Beyond lines, geometry of rational curves of higher degree is more complicated. The main difficulty is
that smooth rational curves of higher degree can degenerate to singular curves with several components.
That is, the space of smooth rational curves is often non-compact, hence may allow various compactifica-
tions. For instance, one can compactify it using the Chow scheme (parametrizing algebraic cycles), the
Hilbert scheme (parametrizing closed subschemes), the Kontsevich moduli space (parametrizing stable
maps), and the Simpson’s moduli space of semi-stable sheaves (see [10, §1] for the precise definitions).
Furthermore, in the case of conics, one can consider the space of complete conics (parametrizing degener-
ations of pairs of a smooth conic and its dual conic), which is a classical object in enumerative geometry
(see [42]).

The study on compactified spaces of rational curves is an active research area. An important result
is that on a rational homogeneous space X, if we choose a homology class α ∈H2(X, Z), then the space of
smooth rational curves representing α is irreducible, whenever it is nonempty. This statement is verified
by several authors, including Kim and Pandharipande [18], Thomsen [40] and Perrin [34]. In particular,
if X is a rational homogeneous space of Picard number 1, then the space of smooth rational curves of
fixed degree on X is irreducible (possibly empty).

In the case where the degree of rational curves is at most 3, Chung, Kiem and Hong [10] construct
explicit birational morphisms relating three compactifications introduced above: the Hilbert compact-
ification, the Kontsevich compactification, and the Simpson compactification. Thus once we obtain a
description of one of them, a description of the others follows. For example, for the space of conics,
after taking the normalizations, the Hilbert compactification and the Kontsevich compactification can
be constructed as blow-downs of a common smooth variety, where the blow-up loci are specified in [10,
Theorem 3.7].

1.1.2 Family of Conics Parametrized by Riemannian Symmetric Spaces

After Boothby’s characterization [4], Wolf [44] proves that the adjoint variety Zg admits a foliation
by smooth conics, whose leaf space is a certain Riemannian symmetric space. In this subsection, we
recall Wolf’s theorem and its generalization. Though the results in this subsection would not be used in
this article, they shall explain a connection between conics on Zg and the theory of spherical varieties
(Subsection 1.1.3).

More precisely, Wolf [44] obtains a bijective correspondence between the adjoint varieties and Wolf
spaces. Here, a Wolf space is a Riemannian symmetric space which is quaternion-Kähler (QK for short;
see [3, Chapter 14] for the definition) and of positive curvature. Wolf spaces are real analytic manifolds,
but not necessarily complex manifolds.

Wolf’s correspondence [44] says that for each adjoint variety Zg, there is a Wolf space Mg equipped
with a real analytic fibration Zg →Mg whose fibers are smooth conics transverse to the contact distribu-
tion and have normal bundles ≃ OP1(1)⊕(dim Zg−1). Conversely, every Wolf space arises in this way. (In
fact, Wolf also obtains a similar correspondence between certain homogeneous domains in the adjoint
varieties and QK symmetric spaces of negative curvature; see [44, Theorem 6.7].)

Salamon [38] generalizes Wolf’s correspondence to arbitrary QK manifolds. For each QK manifold
M , Salamon constructs a complex manifold Z equipped with a contact distribution D and a fibration
Z → M generalizing Wolf’s result: the fibers are smooth rational curves transverse to D and have
normal bundles ≃ OP1(1)⊕(dim Z−1). Furthermore, Salamon’s construction shows that there exists an
anti-holomorphic involution θ ∶ Z → Z preserving D and each fiber of Z → M . As a consequence, M ,
parametrizing a family of θ-invariant rational curves, can be considered as a totally real submanifold of

2



the space of rational curves on Z with normal bundles ≃ OP1(1)⊕(dim Z−1). Nowadays, Z is called the
twistor space of the QK manifold M . The fibers of Z →M are often called twistor lines, however in this
article, to emphasize their TZ/D-degree (= 2), we call them twistor conics. For these results, we refer to
[38] and [25, §1].

The other direction of Wolf’s correspondence is generalized by LeBrun [25]. To state the result, we
need two data: a complex contact manifold (Z, D) and a fixed-point-free anti-holomorphic involution θ ∶

Z → Z preserving D. Under this setting, LeBrun shows that if Y is the set of θ-invariant smooth rational
curves C ⊂ Z transverse to D and with normal bundles ≃ OP1(1)⊕(dim Z−1), then Y is a QK manifold
(possibly pseudo-Riemannian; see [25, Theorem 1.3]). Using this result, LeBrun [25, §2] constructs new
examples of QK manifolds.

Finally, based on LeBrun’s theorem, Dufour [12] provides a recipe of QK manifolds, starting from
parabolic geometries modeled on the G2-adjoint variety ZG2 , and then describes the resulting QK metrics
explicitly. In the proof, the study on deformations of double lines (which are singular conics) on the
G2-adjoint variety ZG2 plays an important role. See [12, Théorèmes 108, 126] for details.

1.1.3 Luna-Vust Theory for Spherical Varieties

As explained in Subsection 1.1.2, the adjoint variety Zg admits a real analytic family of smooth
conics parameterized by a Riemannian symmetric space Mg. Furthermore, Mg can be viewed as a
totally real submanifold of the space of smooth conics on Zg. From these facts, one can expect that the
space of smooth conics may contain the complexification of Mg, i.e. a homogeneous space (GR)

C/(KR)
C

where GR and KR are compact real Lie groups such that Mg ≃ GR/KR. This observation leads us
to the theory of spherical varieties, since the homogeneous space (GR)

C/(KR)
C is a symmetric variety

(Definition 2.3.9), hence in particular a spherical variety.
Let us briefly introduce the notion of spherical varieties and their embedding theory. For a connected

reductive group G′, a normal G′-variety is called (G′-)spherical if a Borel subgroup of G′ has an open
orbit. The class of spherical varieties includes a lot of classical examples of almost homogeneous varieties:
toric varieties, rational homogeneous spaces, symmetric varieties, etc. Observe that by the definition, a
G′-spherical variety X contains an open G′-orbit, say O. In this case, we say that X is an O-embedding.

Recently, there has been a huge progress in the classification of spherical varieties. The program
consists of two steps: (1) given a homogeneous spherical variety O, classify all O-embeddings, and (2)
classify homogeneous spherical varieties. The first step (1) is completed by Luna and Vust [27], while
the second step (2) is achieved more recently, contributed by several researchers (including Bravi, Cupit-
Foutou, Losev, Luna and Pezzini; we refer to [41, §30.11–12] and the references therein). In this article,
we are mainly interested in the classification of a fixed homogeneous spherical variety, so let us summarize
the result of Luna and Vust on the first step (1).

In [27], Luna and Vust show that given a homogeneous spherical variety O, there is a bijective
correspondence between O-embeddings and certain combinatorial objects, called colored fans (modulo
isomorphisms). A colored fan is a finite collection of pairs of a polyhedral cone and a finite set (see
Definition 2.3.2), and so O-embeddings are classified in terms of finite combinatorial data. For example,
if G′ is a torus and G′ = O, then O-embeddings are exactly toric varieties, and the colored fan of a toric
variety can be identified with the associated fan, which appears in the standard theory of toric varieties
([31]). In fact, roughly, one can say that the colored fan of a spherical variety plays a role of the fan of a
toric variety. For example, for spherical varieties, we have an orbit-cone correspondence (Lemma 2.3.4),

3



and a smoothness criterion ([13]) in terms of the colored fans. More details on Luna-Vust theory can be
found in Section 2.3.

1.2 Main Results and Structure of the Article

Now we explain the content of this article. The precise statements for the main theorems are given
in Section 3.2, and in this section, we present them only in a simplified form. Recall that g is a simple Lie
algebra, and G is the associated simply connected Lie group. We are mainly interested in the irreducible
component of the space of smooth conics on Zg, parametrizing twistor conics; denote it by Rα̌g

(Zg). In
fact, if g is not of type A, then Rα̌g

(Zg) coincides with the whole space of smooth conics, see Section
3.1. For the other components in the case where g is of type A, the situation becomes simpler, and we
discuss them in Subsection 3.1.2.

In Chapter 2, we review known results which are necessary in our study: the contact distribution on
the adjoint variety Zg (Section 2.1), the construction of the spaces of smooth rational curves on rational
homogeneous spaces (Section 2.2), and Luna-Vust theory for symmetric varieties (Section 2.3). Namely,
we introduce three compactifications of Rα̌g

(Zg): the (semi-normalized) Hilbert scheme Hg, the Chow
scheme Cg, and the space CoCg of complete conics. These are projective compactifications of Rα̌g

(Zg),
and their normalizations are related via G-equivariant birational morphisms

CoCnor
g →Hnor

g →Cnor
g .

In Chapter 3, we study smooth conics on Zg and their deformations. The following are our first
main theorem:

Main Theorem 1 (Theorem 3.2.1). Twistor conics on Zg, i.e. smooth conics transverse to the contact
structure, form an open G-orbit Og in Rα̌g

(Zg), which is isomorphic to a homogeneous G-symmetric
variety.

Its proof is given in Section 3.3. In Chapter 3, we also study smooth conics passing through a given
point, and prove the following theorem:

Main Theorem 2 (Theorem 3.3.4, Corollary 3.4.2). Let o ∈ Zg be a point, v ∈ ToZg a nonzero tangent
vector, and Do ⊂ ToZg the contact hyperplane at o.

1. If v /∈Do, then there exists a unique twistor conic tangent to v. That is, the space of twistor conics
passing through o is identified with P(ToZg) ∖ P(Do) ≃ Cdim Zg−1.

2. If g is not of type C and [v] is a general element of P(Do), then there is no smooth conic tangent
to v.

(If g is of type C, then there is a smooth conic in every direction; see Subsection 3.1.1.) The first
statement is proven in Section 3.3, and the second is proven in Section 3.4. Here, the meaning of general
element of P(Do) in the last statement is specified in Proposition 3.4.1. In the last part of this chapter
(Section 3.5), we classify B-fixed points in the compactifications Cg, Hg and CoCg for a Borel subgroup
B of G, which represent the ‘most singular’ deformations of smooth conics on Zg.

Chapter 4 is the core of this article. From this chapter, we regard the compactifications Cnor
g , Hnor

g

and CoCnor
g as spherical varieties, and then compute their colored fans as Og-embeddings:
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Main Theorem 3 (Theorem 3.2.2). The normalizations Cnor
g , Hnor

g and CoCnor
g are G-symmetric

varieties, and their colored fans are given in Tables 3.2–3.4.

Chapter 4 is devoted to the proof of the theorem. The main ingredients of the proof are (1) Luna-Vust
theory for symmetric varieties (Sections 2.3, 3.2), and (2) the classification of B-fixed points (Section
3.5). Using these, we compute the colored fan of each compactification case by case.

In the final Chapter 5, we introduce several applications of the main theorems. Let us introduce
some consequences:

• A classification of G-conjugacy classes of conics on Zg (Section 5.2). For example, when g is of
exceptional type, we show that G-conjugacy classes of conics can be visualized as the following
diagrams:

(Twistor Conics)

(Contact Conics) (Reducible Conics)

(Contact Conics) (Reducible Conics) (Double Lines)

(Reducible Conics) (Double Lines)

(Double Lines)

if g is Er (r = 6, 7, 8) or F4, and

(Twistor Conics)

(Reducible Conics)

(Double Lines)

if g = G2. Here, a contact conic means a smooth conic tangent to the contact distribution D

(Section 3.1), and we draw an edge whenever conics in the upper class can degenerate to conics in
the lower class (for the precise definition and similar diagrams for other g, see Figures 5.1–5.8 and
the discussion after Theorem 5.2.4). In particular, we conclude that in the G2-adjoint variety ZG2 ,
every smooth conic is transverse to the contact distribution.

• Smoothness of the normalized Hilbert scheme Hnor
g (Corollary 5.3.1). This result also follows from

[10, Proposition 3.6], and we shall give a different proof using spherical geometry.

• A description of the variety of minimal rational tangents (VMRT for short; Definition 5.4.1) of
Hnor

g in terms of lines and conics on Zg (Section 5.4 and Figure 5.9).

Remark 1.2.1. A part of this article has appeared in the author’s preprint [22]. There are several
changes in this article, and the main differences are as follows:
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• The application to VMRT of Hnor
g is new. The author would like to thank his Ph.D. advisor Jun-

Muk Hwang for sharing the observation in Remark 5.4.8, and for suggesting finding its geometric
interpretation.

• This article includes the study on CoCg, the space of complete conics, while it is not treated in
[22]. The author is very grateful to Michel Brion for the suggestion to study the space of complete
conics and for helpful discussions.

• This article covers every simple Lie algebra g, while in [22], g is assumed to be not of type A or C.
The author would like to thank Nicolas Perrin for pointing out his misunderstanding in the case
of type A. The author is also grateful to DongSeon Hwang for encouraging him to consider all the
cases.

• The presentation of the proofs of the main theorems is improved. Especially, the computation of
the colored fans in the case where g = B3 is simplified. The author would like to thank Jaehyun
Hong for valuable comments and discussions.
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Chapter 2. Preliminaries

In this chapter, we explain our notation and review several known facts. First of all, our base field
is C, the field of complex numbers, and every scheme is assumed to be locally of finite type over C. A
variety means an integral separated scheme of finite type over C, and a point in a scheme means a closed
point. For a vector space V , P(V ) ∶= V − {0}/C× denotes the space of 1-dimensional subspaces of V .

2.1 Adjoint Variety and Contact Distribution

Our main reference on Lie theory is [32]. Let g be a semi-simple Lie algebra (until we define the
adjoint variety). Let G be the simply connected Lie group associated to the Lie algebra g. Choose a
maximal torus T in G, and a Borel subgroup B containing T . We denote the Lie algebras of T and B by
t and b, respectively. The set of roots and the set of simple roots are denoted by R and S, respectively.
When g is simple, we use the numbering S = {α1, . . . , αrankg} of simple roots given in [32, Reference
Chapter, Table 1] (which is different from the one in [6], especially for exceptional Lie algebras other than
G2). For each root α ∈ R, gα means the root space corresponding to α so that the root decomposition of
g is given by

g = t⊕ ⊕
α∈R

gα.

The character group of T is denoted by χ(T ), and each character λ ∈ χ(T ) is regarded as a linear
functional on t. In this notation, if H ∈ t, then the value of the character corresponding to λ at exp(H)
is equal to eλ(H). The bracket ⟨ , ⟩ means the Killing form on g, and the dual of a root α ∈ R is denoted
by Hα ∈ t. More precisely, Hα is the element of t satisfying ⟨Hα, H⟩ = α(H) for all H ∈ t. The pairing
of two roots α and β is defined as ⟨α, β⟩ ∶= ⟨Hα, Hβ⟩, which extends to an inner product on χ(T ) ⊗Z R.
The natural pairing of χ(T ) and its dual χ∗(T ) is also denoted by ⟨λ, µ⟩ for λ ∈ χ(T ) and µ ∈ χ∗(T ) so
that the Cartan integer is given by ⟨α ∣β⟩ = ⟨α, β∨⟩ for α, β ∈ R where β∨ is the coroot corresponding
to β. A nonzero vector in gα for some α ∈ R is called a root vector, which is often denoted by Eα. If
a collection {Eα ∈ gα ∶ α ∈ R} of root vectors is given, we define Nα, β for α, β ∈ R to be the complex
number satisfying

[Eα, Eβ] = Nα, β ⋅Eα+β

if α + β ∈ R, and Nα, β = 0 if α + β /∈ R.
For a nonempty subset I ⊂ S, we denote by PI the parabolic subgroup containing B generated by

the complement S ∖ I of I. That is, the Lie algebra of PI is

pI ∶= b⊕ ⊕
α∈R+∩ span(S∖I)

g−α

where R+ is the set of all positive roots. The opposite parabolic subgroup of PI is denoted by P −I . We
define W = WG to be the Weyl group of (G, T ), and WG, PI

means the subgroup of W generated by
reflections with respect to α ∈ S ∖ I so that PI = B ⋅WG, PI

⋅B.
From now on, assume that g be a simple Lie algebra. Then the adjoint representation is irreducible,

and its highest weight is the highest root of g, denoted by ρ ∈ R (with respect to the Borel subgroup B).
Thus P(g) contains the unique closed G-orbit, which is the G-orbit of long root vectors. This projective
subvariety of P(g) is called the adjoint variety and denoted by Zg. By its construction, Zg is isomorphic
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g Extended Dynkin diagram of g N(ρ) Classical description of Zg dim Zg n

Cr

−ρ α1 αr
{α1} P2r−1 2r − 1 r − 1

(r ≥ 1)

Ar
−ρ

α1 αr

{α1, αr} Fl1, r(Cr+1) 2r − 1 r − 1
(r ≥ 2)

Br
−ρ

α1 αr

{α2} OG(2, C2r+1) 4r − 5 2r − 3
(r ≥ 3)

Dr
−ρ

α1

αr−1

αr

{α2} OG(2, C2r) 4r − 7 2r − 4
(r ≥ 4)

E6

−ρ

α1

α6

α5

{α6} - 21 10

E7
−ρα6

α7

α1

{α6} - 33 16

E8
−ρ α7

α8

α1

{α1} - 57 28

F4 −ρα4α1
{α4} - 15 7

G2 −ρα2α1
{α2} - 5 2

Table 2.1: Information on Zg.

to a rational homogeneous space G/P where o ∶= [gρ] ∈ P(g) and P is the isotropy group of o in G, i.e.
P ∶= StabG(o). The isotropy group P is a parabolic subgroup containing B and its Lie algebra is

p = t⊕ ⊕
α∈R, ⟨α, ρ⟩≥0

gα = pN(ρ)

where N(ρ) ∶= {αi ∈ S ∶ ⟨αi, ρ⟩ /= 0}. In other words, N(ρ) consists of simple roots which are neighbors of
−ρ in the extended Dynkin diagram of g. Using this description, one can easily show that dim(Zg) = 2n+1
for some n ∈ Z≥0. See Table 2.1 for the extended Dynkin diagram of Zg and the value of n. In the same
table, we provide a description of Zg in the case where g is of classical type. Here, Fl1, r(Cr+1) is
the partial flag variety (parametrizing pairs of lines and hyperplanes in Cr+1), and OG(2, CN) is the
orthogonal Grassmannian (parametrizing isotropic 2-planes in CN ).

The adjoint variety Zg comes with a hyperplane distribution described as follows. Consider a
decomposition

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

where
g0 ∶= t⊕ ⊕

α∈R∶⟨α, ρ⟩=0
gα, g±1 ∶= ⊕

α∈R±∖{±ρ}∶⟨α, ρ⟩/=0
gα, g±2 ∶= g±ρ.
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It makes g a graded Lie algebra, i.e. [gi, gj] ⊂ gi+j where gk ∶= 0 for all k ∈ Z ∖ {0, ±1, ±2}. Let us write
gi ∶= ⊕j≥i gi. Then p = g0, and each gi is a P -module. In the tangent space ToZg of Zg at o, which
is identified with g/p as a P -module, consider a hyperplane Do identified with g−1/p(⊂ g/p). Since Do

is P -invariant, the G-action on Zg induces a well-defined G-invariant vector subbundle D ≃ G ×P Do of
TZg ≃ G×P (g/p) extending Do. This hyperplane distribution D is called the contact distribution on the
adjoint variety.

Remark 2.1.1. There is a notion of contact distribution on a complex manifold, and we refer to [24].
By the result of Boothby [4], the adjoint varieties can be characterized as rational homogeneous spaces
equipped with invariant contact distributions.

The quotient line bundle TZg/D, called the contact line bundle, can be described as follows. Consider
the tautological line bundle OP(g)(−1) on P(g). Its restriction on Zg is a G-homogeneous line bundle,
isomorphic to G×P gρ. Observe that the Killing form of g identifies g/g−1 and the dual of g2 as P -modules.
Therefore we have

OP(g)(1)∣Zg
≃ G ×P (g/g

−1
) ≃ TZg/D.

Next, we introduce another description of the gradation g = ⊕2
m=−2 gm. For a simple root αi ∈ S and

a root α ∈ R, let mi(α) be the coefficient of αi in α.

• If g is not of type A, then there is exactly one simple root, say αj0 , which is not orthogonal to the
highest root ρ (Table 2.1). In this case,

g0 = t⊕ ⊕
α∈R∶mj0(α)=0

gα, gm = ⊕
α∈R∶mj0(α)=m

gm, ∀m /= 0.

Moreover, we have
2 = ⟨ρ ∣ρ⟩ =mj0(ρ) ⋅ ⟨αj0 ∣ρ⟩ = 2 ⋅ ⟨αj0 ∣ρ⟩,

hence for α ∈ R,
⟨α ∣ρ⟩ =mj0(α) ⋅ ⟨αj0 ∣ρ⟩ =mj0(α).

Note that αj0 is a long root if and only if g is not of type C.

• If g = Ar (r ≥ 2), then N(ρ) = {α1, αr}, and

g0 = t⊕ ⊕
α∈R∶m1(α)+mr(α)=0

gα, gm = ⊕
α∈R∶m1(α)+mr(α)=m

gm, ∀m /= 0.

As ⟨α1 ∣ρ⟩ = ⟨αr ∣ρ⟩ = 1, for α ∈ R, we have

⟨α ∣ρ⟩ =m1(α) +mr(α).

To summarize, for arbitrary g, we have

g0 = t⊕ ⊕
α∈R∶⟨α ∣ρ⟩=0

gα, gm = ⊕
α∈R∶⟨α ∣ρ⟩=m

gm, ∀m /= 0.

2.2 Parameter Spaces of Rational Curves

Our main goal is to understand spaces of conics on the adjoint varieties. For this purpose, we recall
several parameter spaces of subobjects of a given projective variety.
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2.2.1 Hilbert Schemes and Chow Schemes

Let us recall the relation between the Hilbert scheme and the Chow scheme. Our main reference
is [20, Ch. I]. Consider a projective variety X equipped with an ample line bundle L. For each
polynomial p(m) ∈ Q[m], there is a projective scheme Hilbp(m)(X, L), called the Hilbert scheme, which
is the moduli space of closed subschemes of X with Hilbert polynomial p(m) with respect to L. More
precisely, following [20, Theorem I.1.4], Hilbp(m)(X, L) is defined to be the scheme representing the
functor

{schemes} → {sets}

T ↦

⎧⎪⎪
⎨
⎪⎪⎩

closed subschemes of X × T which are flat, proper over T

and whose Hilbert polynomials over T with respect to L are p(m)

⎫⎪⎪
⎬
⎪⎪⎭

.

We also write Hilb(X) ∶= ⊔p(m)∈Q[m]Hilbp(m)(X, L) (disjoint union), and call it the Hilbert scheme.
In particular, points of Hilb(X) (Hilbp(m)(X, L), respectively) correspond to closed subschemes of X

(which have Hilbert polynomial p(m) with respect to L, respectively). One advantage of using the
Hilbert scheme is that its infinitesimal structure is well-understood. For example:

Theorem 2.2.1 ([20, Theorem I.2.8 and Proposition I.2.14]). Let X be a projective variety, and V ⊂X

a closed subscheme with its ideal sheaf IV . Then there is a natural isomorphism

T[V ]Hilb(X) ≃ HomOV
(IV /I

2
V , OV )

where the left hand side means the Zariski tangent space at the point [V ]. If furthermore X is smooth,
V is a local complete intersection, and H1(V, NV /X) = 0 where NV /X is the dual of the conormal sheaf
IV /I

2
V (which is locally free), then Hilb(X) is smooth at [V ] and its tangent space is given by

T[V ]Hilb(X) ≃H0
(V, NV /X).

On the other hand, for d ∈ Z≥0 and d′ ∈ Z>0, there is another projective scheme Chowd, d′(X, L),
called the Chow scheme, which is the moduli space of non-negative proper algebraic d-cycles of L-degree d′

in X. As before, following [20, Theorem I.3.21], Chowd, d′(X, L) is defined to be the scheme representing
the functor

{semi-normal schemes} → {sets}

T ↦

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

well-defined families of non-negative, proper, algebraic cycles
of dimension d and degree d′ of X × T /T

(see [20, Definition I.3.10])

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

.

Here, semi-normality is defined as follows:

Definition 2.2.2 ([20, §I.7.2], [21, §10.2]). Let X be a reduced scheme.

1. The semi-normalization of X is a scheme Xsn satisfying the following conditions:

(a) Xsn is a reduced scheme equipped with a bijective morphism Xsn →X;

(b) The normalization Xnor →X factors through the morphism Xsn →X, i.e. Xnor →Xsn →X;
and

(c) If Y is a scheme satisfying the conditions (a) and (b), then there exists a unique factorization
Xsn → Y →X.
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2. X is called semi-normal if it is isomorphic to its semi-normalization Xsn.

There is a natural morphism from the semi-normalized Hilbert scheme to the Chow scheme, which
sends a subscheme to its fundamental cycle. Here, for a closed subscheme V ⊂ X of dimension d, the
fundamental cycle of V is an effective d-cycle on X defined as

FC(V ) ∶= ∑
vi∶dim Vi=d

length(Ovi, V ) ⋅ [Vi]

where vi runs over the generic points of V and Vi is the corresponding irreducible component of V red

([20, Definition I.3.1.3]).

Theorem 2.2.3 ([20, Theorems I.6.6, I.7.3.1]). For a projective variety X with an ample line bundle L
and a polynomial p(m) ∈ Q[m] of degree d, FC induces a morphism

FC ∶ Hilbsn
p(m)(X, L) →

∞
∐
d′=1

Chowd, d′(X, L), [V ] ↦ FC(V )

satisfying the following condition: For a closed subscheme V ⊂ X with Hilbert polynomial p(m) with
respect to L, FC is a local isomorphism near the point [V ] ∈ Hilbsn

p(m)(X, L) if V is reduced, has pure
dimension and satisfies Serre’s condition S2. Here, Hilbsn

p(m)(X, L) is the semi-normalization of the
reduced scheme (Hilbp(m)(X, L))red.

Note that since the semi-normalization morphism is bijective, we may identify points in the Hilbert
scheme and points in its semi-normalization.

2.2.2 Spaces of Smooth Rational Curves

From now on, we focus on parameter spaces of rational curves. Suppose that X is a projective
variety, equipped with an ample line bundle L. A rational curve on X means the image of a non-constant
morphism P1 → X. Then for each d ∈ Z>0, there exists a quasi-projective variety parametrizing rational
curves of L-degree d on X, denoted by RatCurvesd(X, L). Roughly, RatCurvesd(X, L) is defined as
the normalization of the locus of the fundamental cycles of rational curves in Chow1, d(X, L). See [20,
Definition–Proposition II.2.11] for details. Alternatively, RatCurves(X) ∶= ∐d≥1 RatCurvesd(X, L) can
be constructed as the Aut(P1)(= PGL2)-quotient of Homnor

bir (P1, X), the normalization of the space
Hombir(P1, X) of morphisms P1 →X which are birational onto their images ([20, Theorem II.2.15]).

Now assume that X is smooth, and consider a non-constant morphism f ∶ P1 → X. Following [20,
Definition II.3.1], for a closed subscheme B ⊂ P1 and its ideal IB ⊂ OP1 , we say that f is free over B if
H1(P1, f∗TX ⊗ IB) = 0 and f∗TX ⊗ IB is generated by global sections. Recall that by Grothendieck’s
theorem, f∗TX is split into the direct sum of line bundles, say f∗TX ≃ ⊕dim X

i=1 OP1(ai) for some integers
a1 ≥ ⋯ ≥ adim X . Thus if B = ∅ (i.e. IB = OP1), then f is free over B if and only if adim X ≥ 0. In this
case, we simply say that f is free. On the other hand, if B is a point (so that IB ≃ OP1(−1)), then f is
free over B if and only if adim X ≥ 1.

Theorem 2.2.4 ([20, Theorem II.3.11]). Let X be a smooth projective variety, and B ⊂ P1 a finite
subscheme of length ≤ 2, possibly empty. For a morphism g ∶ B → X, there exist countably many closed
subvarieties Vi(B, g) ⊊ X such that if f ∶ P1 → X is a non-constant morphism satisfying f ∣B = g and
im(f) /⊂ ⋃i Vi(B, g), then f is free over g.

In other words, one can say that a non-constant morphism P1 → X whose image passes through a
very general point is free. In particular, if X is homogeneous under the action of Aut(X), then every
non-constant morphism P1 →X is free.
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Corollary 2.2.5. Assume that X is a projective variety which is homogeneous under the action of
Aut(X). Let Hilb(X) be the Hilbert scheme of X, and R(X) ⊂ Hilb(X) be the locus of smooth rational
curves on X. Then R(X) is an open subscheme of Hilb(X), and it is smooth.

Proof. R(X) is an open subscheme of Hilb(X) since being smooth is an open condition in a proper and
flat family. Thus it is enough to show that if C ⊂X is a smooth rational curve, then Hilb(X) is smooth
at the point [C]. In fact, since X is homogeneous, the embedding P1 ≃

Ð→ C ⊂ X is a free morphism by
Theorem 2.2.4. It means that TX ∣C is globally generated, hence the normal bundle NC/X is isomorphic
to ⊕dim X

i=1 OC(ai) for some integers ai ≥ 0. In particular, H1(C, NC/X) = 0, and so [C] is a smooth point
by Theorem 2.2.1.

From now on, assume that X is a rational homogeneous space, i.e. X is homogeneous under an
action of a reductive group. By Corollary 2.2.5, the space R(X) of smooth rational curves is smooth. By
its construction, R(X) = ∐p(m)∈Q[m]Rp(m)(X, L) where L is an ample line bundle and Rp(m)(X, L) ∶=

R(X) ∩ Hilbp(m)(X, L). Recall that the Picard group Pic(X) is isomorphic to H2(X, Z), and the
(co)homology groups H2(X, Z) and H2(X, Z) are lattices of finite rank which are dual to each other. In
other words, a homology class α̌ ∈ H2(X, Z) is uniquely determined by degM(α̌), ∀M ∈ Pic(X). Thus
any two members of Rp(m)(X, L) represent the same homology class, hence given α̌ ∈H2(X, Z),

Rα̌(X) ∶= {[C] ∈R(X) ∶ C represents α̌ in H2(X, Z)}

is a well-defined open subscheme of R(X).

Theorem 2.2.6 ([18], [40], [34]). For a rational homogeneous space X and a homology class α̌ ∈

H2(X, Z), Rα̌(X) is irreducible whenever it is nonempty. That is, Rα̌(X) is a smooth quasi-projective
variety.

Finally, we review the description of spaces of lines on rational homogeneous spaces, following [23,
Section 4]. Let X = G/PI be a rational homogeneous space, G being a simply connected simple Lie
group and nonempty I ⊂ S. Then Pic(X) ≃ H2(X, Z) is isomorphic to the sublattice of the weight
lattice, generated by the fundamental weights corresponding to elements of I. Indeed, if αi ∈ I and ωi

is the corresponding fundamental weight, then the line bundle associated to ωi can be obtained as the
pull-back of OP(Vi)(1) via the morphism

X = G/PI → G/Pαi ⊂ P(Vi)

where Vi is the fundamental representation associated to ωi. Therefore the line bundle LI defined by
∑αi∈I ωi can be obtained as the pull-back of OP(⊗αi∈I Vi)(1) via

φI ∶X = G/PI → ∏
αi∈I

G/Pαi ↪ ∏
αi∈I

P(Vi) ↪ P(⊗
αi∈I

Vi) .

In fact, φI is an embedding, i.e. LI is very ample. If C ⊂X is a LI -line, i.e. a rational curve of LI -degree 1,
then there exists αi ∈ I such that the homology class of C is α∨i ∈H2(X, Z). Here, H2(X, Z) is identified
with the lattice generated by the coroots corresponding to elements of I. Therefore ∐αi∈I Rα∨i (X)

parametrizes LI -lines on X.

Theorem 2.2.7 ([23, Theorem 4.3 and Theorem 4.8]). Let X = G/PI be a rational homogeneous space,
G being a simply connected simple Lie group and nonempty I ⊂ S. Assume that αi ∈ I is long (as a root),
and let N(αi) ∶= {αj ∈ S ∶ ⟨αi, αj⟩ < 0}. Then the following hold.
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1. G acts transitively on Rα∨i (X), and Rα∨i (X) ≃ G/P(I∖{αi})∪N(αi).

2. For the base point o ∶= e ⋅ PI ∈X, PI acts transitively on

C
αi
o ∶= {[ToC] ∈ P(ToX) ∶ [C] ∈Rα∨i (X) such that o ∈ C}.

Note that Cαi
o is projective, hence for the standard Levi subgroup LI of PI , Cαi

o ≃ LI/(LI ∩ PI).
As a corollary, let us describe the space of lines on the adjoint variety Zg ⊂ P(g) for each simple Lie

algebra g not of type C. (In fact, if g is of type C, then since ρ = 2ω1, Zg ⊂ P(g) is the second Veronese
embedding of the projective space, hence Zg does not contain any line on P(g).) If g is not of type C,
we have ρ = ∑αi∈N(ρ) ωi (Table 2.1), which means that OP(g)(1)∣Zg

≃ LN(ρ). That is, lines on Zg with
respect to the embedding into P(g) are exactly LN(ρ)-lines.

• If g is not of type A or C, then N(ρ) = {αj0} for some αj0 ∈ S, hence the space of lines on
Zg ⊂ P(g) is isomorphic to G/PN(αj0). On the other hand, by [23, Proposition 2.4], Do ⊂ ToZg is
an irreducible P -module. By Theorem 2.2.7, Co = C

αj0
o is the highest weight orbit in P(Do). (This

description can be also found in [15, Proposition 5].)

• If g = Ar (r ≥ 2), then the space of lines has two connected components Rα∨1(X) ⊔Rα∨r (X) where

Rα∨1(X) ≃ G/Pα2, αr , and Rα∨r (X) ≃ G/Pα1, αr−1 .

Moreover, we have Do =Dα1
o ⊕Dαr

o as P -modules where under the identification Do ≃ g
−1/p,

Dα1
o ∶= ( ⊕

1≤i<r

g−(α1+⋯+αi) ⊕ p) /p, and Dαr
o ∶= ( ⊕

1<i≤r

g−(αi+⋯+αr) ⊕ p) /p.

By [23, §2.3], each of Dα1
o and Dαr

o is an irreducible P -module. By Theorem 2.2.7, for each
i = 1, r, Cαi

o is the highest weight orbit in P(Dαi′
o ) for some i′ = 1, r. In fact, for the projection

Zg = G/Pα1, αr → G/Pα1 , Dαr
o is the tangent space of a fiber, hence the lines tangent to Dαr

o are
contained in the fiber. Therefore Cαi

o is the highest weight orbit in P(Dαi
o ) for i = 1, r.

The space of lines passing through o on Zg is described in Table 2.2. Here, νk(P1) means the kth
Veronese embedding of P1. Observe that the dimension of the space of lines through o is always equal
to n − 1.

2.2.3 Spaces of Complete Conics

In contrast to the case of lines, the spaces of smooth rational curves of higher degree are not
projective. In this subsection, we consider smooth conics, i.e. smooth rational curves of degree 2, and
introduce the notion of the space of complete conics, which is a compactification of the space of smooth
conics.

First, we recall the construction of the space of complete conics on P2. Let V be a vector space of
dimension 3. Then P(Sym2V ∗), isomorphic to P5, parametrizes hyperquadrics on P(V ). Indeed, with
respect to the natural PGL(V )-action, P(Sym2V ∗) consists of three orbits:

• The locus of smooth conics. This is an open PGL(V )-orbit, isomorphic to PGL(V )/PO(V ). Here,
PO(V ) ∶= O(V )/ ± id denotes the image of the orthogonal group O(V ) in PGL(V ).

• The locus of reducible conics, i.e. unions of two lines. This orbit is of codimension 1, but it is not
a closed PGL(V )-orbit.
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g Description of ⊔αi∈N(ρ) C
αi
o ⊂ P(Do)

Ar (r ≥ 2) Pr−2 ⊔ Pr−2 (disjoint linear subspaces)
Br (r ≥ 4) P1 ×Q2r−5 (Segre)
Dr (r ≥ 5) P1 ×Q2r−6 (Segre)

B3 P1 × ν2(P1) (Segre)
D4 P1 × P1 × P1 (Segre)
E6 Gr(3, 6) (Plücker)
E7 OG(6, 12) (Plücker)
E8 E7/P1 (minimal embedding)
F4 LG(3, 6) (minimal embedding)
G2 ν3(P1)

Table 2.2: Space of lines passing through o ∈ Zg and its embedding into the contact hyperplane.

• The locus of double lines, i.e. non-reduced hyperquadrics. This is a unique closed PGL(V )-orbit,
isomorphic to Gr(2, V ) (of codimension 3).

Then the space of complete conics on P(V ) is defined to be the blow-up of P(Sym2V ∗) along the orbit
of double lines. We denote it by CoC(P(V )).

For arbitrary projective subvariety X ⊂ PN , N ≥ 2, we recall the following well-known fact:

Proposition 2.2.8 ([30, Remark 4.4.(i)]). Let C ⊂ PN be a closed subscheme with Hilbert polynomial
2m+1. Then there exists a unique plane in P(g) which contains C as a closed subscheme. In particular,
the scheme C is isomorphic to a hyperquadric on a plane.

Definition 2.2.9. Let X ⊂ PN be a projective subvariety.

1. A closed subscheme C ⊂X is called a conic if its Hilbert polynomial in PN is equal to 2m + 1.

2. A conic C ⊂ X is called a reducible conic (a double line, respectively) if C is the union of two
distinct lines (C is non-reduced, respectively).

Let us write PN = P(W ) for a vector space W of dimension N +1. Choose a 3-dimensional subspace
V ⊂ W so that Gr(3, W ) ≃ PGL(W )/StabP GL(W )(V ). By Proposition 2.2.8, the Hilbert scheme of
conics on P(W ) is given by

Hilb2m+1(P(W ), OP(W )(1)) ≃ PGL(W ) ×StabP GL(W )(V ) P(Sym2V ∗),

a homogeneous fiber bundle over Gr(3, W ) with fiber ≃ P(Sym2V ∗). Then we define the space of complete
conics on P(W ) as

CoC(P(W )) ∶= PGL(W ) ×StabP GL(W )(V ) CoC(P(V )).

By its definition, CoC(P(W )) contains the space of smooth conics (and reducible conics) on P(W ).
Thus we may define the space of complete conics on X(⊂ P(W )) as

CoC(X, OP(W )(1)∣X) ∶= {smooth conics on X ⊂ P(W )} ⊂CoC(P(W )).

Observe that by the definitions, we have a StabP GL(W )(V )-equivariant morphism (the blowing-up)

CoC(P(V )) → P(Sym2V ∗),
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which induces a PGL(W )-equivariant birational morphism

CoC(P(W )) → Hilb2m+1(P(W ), OP(W )(1)).

This is an isomorphism over Hilb2m+1(P(W ), OP(W )(1)) ∖ {double lines}. Thus it induces a morphism

CH ∶CoC(X, OP(W )(1)∣X) → {smooth conics} ⊂ (Hilb2m+1(X, OP(W )(1)∣X))red

which is an isomorphism off the locus of double lines.

Remark 2.2.10. 1. Alternatively, the space CoC(P(V )) of complete conics on the plane P(V )
(dim V = 3) can be constructed as the closure of

{([C], [C∨]) ∶ C ⊂ P(V ) smooth conics} ⊂ P(Sym2V ∗) × P(Sym2V ).

Here, for a smooth conic C ⊂ P(V ), C∨ ⊂ P(V ∗) is the dual hypersurface, i.e. the set of points
corresponding to lines tangent to C (and it is known that C∨ is again a smooth conic). In this
construction, the defining equation of CoC(P(V )) can be described as follows. First, choose a basis
of V so that P(Sym2V ∗) is identified with the projectivization of the set M3 of 3 × 3 symmetric
matrices. Similarly, its dual basis induces the identification between P(Sym2V ) and PM3. Then
CoC(P(V )) can be identified with the set of ([M1], [M2]) ∈ PM3 × PM3 such that M1 ⋅M2 is a
scalar matrix (possibly zero). See [42, §5] and [41, Example 17.12].

2. The space CoC(PN) of complete conics on PN (N ≥ 2) is a wonderful variety. Here, for a connected
reductive group G′, a smooth projective G′-variety W is called wonderful if

(a) W contains an open G′-orbit, and its complement is the union of prime divisors Wi, 1 ≤ i ≤ r

such that each Wi is smooth and Wi and Wj intersect transversally for all i /= j; and

(b) For arbitrary ∅ /= I ⊂ {1, . . . , r},
⋂
i∈I

Wi ∖ ⋃
j/∈I

Wj

is a single G′-orbit.

Then CoC(PN) is a wonderful PGLN+1-variety with r = 2. See [7, Exemple 2.7.(b)].

2.3 Luna-Vust Theory for Symmetric Varieties

2.3.1 Spherical Varieties

Let us review the embedding theory of spherical varieties. Our main reference is [41] and [19]. Let
G′ be a connected reductive group. A normal G′-variety X is called (G′-)spherical if a Borel subgroup
has an open orbit in X, or equivalently if a Borel subgroup has only finitely many orbits. If O is the
open G′-orbit in the spherical variety X, then O is a homogeneous spherical variety, and we say that X

is an O-embedding.

Remark 2.3.1. Here are several examples of spherical varieties.

1. If G′ is a torus, then the notion of G′-spherical varieties coincides with that of toric varieties, since
a torus is a Borel subgroup of itself.
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2. Rational homogeneous spaces G′/P ′ are G′-spherical. This is a consequence of the Bruhat decom-
position.

3. Wonderful G′-varieties (Remark 2.2.10) are G′-spherical varieties. This is a result of Luna ([41,
Theorem 30.15]).

Luna-Vust theory ([27]) says that given a homogeneous spherical variety O, O-embeddings can be
classified in terms of combinatorial data, called colored fans, which can be constructed as follows. Let
O be a homogeneous G′-spherical variety, T ′ ⊂ G′ a maximal torus, and B′ ⊂ G′ a Borel subgroup
containing T ′. For the set C(O)(B

′) ⊂ C(O)× of rational B′-eigenfunctions, define

ΛO ∶= {χ ∈ χ(B′) ∶ b.f = χ(b) ⋅ f ∀b ∈ B′ for some f ∈ C(O)(B
′)
},

which is a sublattice of the character group χ(B′) ≃ χ(T ′). If C(O)B
′
⊂ C(O)× denotes the set of

B′-invariant rational functions on O, then since we have a short exact sequence

0→ C× = C(O)B
′
→ C(O)(B

′)
→ ΛO → 0,

a valuation v ∶ C(O)× → Q induces a group homomorphism ΛO → Q. In other words, a valuation
corresponds to an element in the Q-vector space E ∶= HomZ(ΛO, Q). Moreover, this correspondence is
injective for G′-invariant valuations ([19, Corollary 2.8]), hence we may identify the set of G-invariant
valuations on O with its image in E , denoted by V and called the valuation cone. If we define

D(O) ∶= {B′-stable prime Weil divisors of O}

and consider the valuation induced by each element of D(O), then a similar process yields a function
ϵ ∶ D(O) → E , which is not injective in general. The elements of D(O) are called colors.

Next, consider a simple O-embedding X, meaning that X is an O-embedding which contains exactly
one closed G′-orbit. If Y ⊂X is the unique closed orbit in X, define

F(X) ∶= {D ∈ D(O) ∶ Y ⊂D in X}.

We call each element of F(X) a color of X. Since G′-stable prime divisors of X can be considered as
elements of V, it is possible to define a convex cone in E by

C(X) ∶= Q≥0⟨ϵ(F(X)), G′-stable prime divisors of X⟩.

Now let X be an arbitrary O-embedding. For every G′-orbit Y ⊂ X, Y has a G′-stable open
neighborhood

XY ∶= {x ∈X ∶ Y ⊂ G′ ⋅ x}

which is a simple O-embedding such that Y is its unique closed orbit. Thus to X, we can associate a
collection of pairs

F(X) ∶= {(C(XY ), F(XY )) ∶ Y is a G′-orbit in X}.

Then each (C(XY ), F(XY )) is a colored cone, and F(X) is a colored fan, in the following sense:

Definition 2.3.2. Let E0 be a finite dimensional Q-vector space, D0 a finite set, V0 ⊂ E0 a convex cone,
and ϵ0 ∶ D0 → E0 a function.

1. A colored cone for (E0, D0, V0, ϵ0) is a pair (C, F) of subsets C ⊂ E0 and F ⊂ D0 such that

16



(a) C is a convex cone generated by ϵ0(F) and finitely many elements in V0; and

(b) the relative interior of C intersects with V0.

2. A colored cone (C, F) is called strictly convex if C is strictly convex and 0 /∈ ϵ0(F).

3. For colored cones (C, F) and (C′, F ′), (C′, F ′) is called a colored face of (C, F) if C′ is a face of
the cone C and F ′ = F ∩ ϵ−1

0 (C
′).

4. A nonempty finite set F of colored cones for (E0, D0, V0, ϵ0) is called a colored fan if

(a) For every element of F, its colored faces are contained in F; and

(b) For every v ∈ V0, there is at most one element of F of which relative interior contains v.

5. A colored fan is called strictly convex if it consists of strictly convex colored cones.

Keeping the previous notation, for a homogeneous spherical variety O, a colored cone/fan for
(E , D(O), V, ϵ) is called a colored cone/fan for O.

Theorem 2.3.3 ([19, Theorem 4.3], [41, Section 15]). For a homogeneous spherical variety O, the map
X ↦ F(X) is a bijection between isomorphism classes of O-embeddings, and strictly convex colored fans
for O.

Under this correspondence, a simple O-embedding X is corresponding to a colored fan consisting
of (C(X), F(X)) and its colored faces. Conversely, every strictly convex colored cone is induced from a
simple O-embedding.

A lot of geometric properties of spherical varieties can be expressed in terms of colored data. For
example, we have the following lemmas.

Lemma 2.3.4 ([19, Lemma 4.2]). For a G′-spherical variety X, the assignment Y ↦ (C(XY ), F(XY ))

between G′-orbits in X and elements of F(X) is bijective and order-reversing. Here, the set of orbits is
(partially) ordered by inclusion of closures.

Lemma 2.3.5 ([19, Theorem 5.2]). A spherical variety X is complete if and only if the valuation cone
V is contained in the union of colored cones in the colored fan of X. In particular, if X is simple, then
X is a complete variety if and only if C(X) is generated by ϵ(F(X)) and V.

Lemma 2.3.6 ([19, Lemma 7.5]). Let O be a homogeneous G′-spherical variety. Suppose that X is a
simple O-embedding and its unique closed orbit Y is projective. Let B′ be a Borel subgroup containing
a maximal torus T ′, T ′′ ∶= g−1 ⋅ T ′ ⋅ g and B′′ ∶= g−1 ⋅B′ ⋅ g for some g ∈ G′, and w0 a representative of
the longest element in the Weyl group of (G′, T ′′) with respect to B′′. Then the stabilizer of the unique
B′′-fixed point in Y is the opposite parabolic subgroup (containing B′′) of

⋂
D∈D(O)∖F(X)

w0 ⋅ g
−1
⋅ StabG′(D) ⋅ g ⋅w

−1
0

where the colored data D(O) and F(X) are defined with respect to B′.

Non-normal embeddings of a homogeneous spherical variety can be studied by the following propo-
sition:

Proposition 2.3.7 ([41, Proposition 15.15]). For a G-variety X admitting a G-linearized ample line
bundle, if X contains an open G-orbit which is spherical, then its normalization map π ∶ Xnor → X is
bijective on the sets of G-orbits. That is, for a G-orbit O of X, π−1(O) is also a single G-orbit.
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Remark 2.3.8. Proposition 2.3.7 does not mean that the orbits are isomorphic as varieties. However,
since π is a finite birational morphism, O and π−1(O) are isomorphic if O is either open or projective.

2.3.2 Symmetric Varieties

From now on, we focus on symmetric varieties.

Definition 2.3.9. For a connected reductive group G′ and its closed subgroup K ′, a homogeneous
variety G′/K ′ is called (G′-)symmetric if there is a nontrivial involution σ ∶ G′ → G′ such that (G′)σ ⊂
K ′ ⊂ NG′((G

′)σ) where (G′)σ is the fixed point subgroup. A normal G′-variety which contains an open
G′-orbit isomorphic to a homogeneous symmetric variety is also called (G′-)symmetric.

A homogeneous G′-symmetric variety is G′-spherical ([41, Theorem 26.14], [11, Section 1.3]), and so
Theorem 2.3.3 can be applied to symmetric varieties. Indeed, Vust ([43]) obtains a practical description
of colored data for symmetric varieties, which is explained in this subsection, following [41, Section 26].

For simplicity, from now on, we assume that G′ is a simply connected semi-simple Lie group and
K ′ ∶= (G′)σ for an involution σ(/= id). This assumption implies that K ′ = (G′)σ is a connected reductive
subgroup ([39, Section 8]). Put O ∶= G′/K ′, and let T ′ be a maximally σ-split torus in G′. That is, T ′ is
a maximal torus such that T ′ is σ-stable and dim{t ∈ T ′ ∶ σ(t) = t−1} is maximal among all maximal tori.
As before, B′ is a Borel subgroup containing T ′. Then define R′ and S′ as the root system and the set of
simple roots defined by (G′, T ′, B′), respectively. Let T ′1 be the identity component of {t ∈ T ′ ∶ σ(t) = t−1}

so that T ′1 is a subtorus of T ′. Consider subsets

R′O ∶= {α
′ ∈ χ(T ′1) ∶ α

′
∈ R′} ∖ {0},

S′O ∶= {α
′
i ∈ χ(T ′1) ∶ α

′
i ∈ S′} ∖ {0}

where α′ ∶= α′∣T ′1 . It is well-known that one can choose B′ so that for every positive root α′ ∈ R′ such
that α′ /= 0, we have σ(α′) < 0, under the natural action of σ on R′ ([11, Lemma 1.2]; this condition
ensures that B′ ⋅K ′/K ′ is open in O). Then R′O becomes a root system of χ(T ′1)⊗Z Q with simple roots
in S′O ([41, Lemma 26.16]), called the restricted root system. Moreover, the lattice ΛO is isomorphic to
the character group χ(T ′/T ′∩K ′) = χ(T ′1/T

′
1∩K ′). This lattice is a sublattice of χ(T ′1) with finite index,

thus the vector space E is identified with χ∗(T
′
1) ⊗Q.

Observe that the restriction χ(T ′)⊗ZQ→ χ(T ′1)⊗ZQ can be identified with the orthogonal projection

χ(T ′) ⊗Z Q→ χ(T ′) ⊗Z Q, χ↦
χ − σ(χ)

2
.

By identifying its image with χ(T ′1) ⊗Z Q, the dual root system (R′O)∨ can be realized as follows. For
any α′ ∈ R′ satisfying α′ /= 0, Vust [43, Lemme 2.3] shows that one of the following holds:

• σ(α′) = −α′. In this case, put α′
V
∶= (α′)∨. Then for all χ ∈ χ(T ), we have

⟨α′
V

, χ⟩ = ⟨(α′)∨,
χ − σ(χ)

2
⟩ = ⟨χ ∣α′⟩.

• ⟨(α′)∨, σ(α′)⟩ = 0. In this case, put α′
V
∶= (α′)∨ − σ(α′)∨. Then for all χ ∈ χ(T ), we have

⟨α′
V

, χ⟩ = ⟨(α′)∨ − σ(α′)∨,
χ − σ(χ)

2
⟩ = ⟨χ ∣α′⟩ − ⟨χ ∣σ(α′)⟩.

• ⟨(α′)∨, σ(α′)⟩ = 1. In this case, put α′
V
∶= 2((α′)∨ − σ(α′)∨). Then for all χ ∈ χ(T ), we have

⟨α′
V

, χ⟩ = 2⟨(α′)∨ − σ(α′)∨,
χ − σ(χ)

2
⟩ = 2(⟨χ ∣α′⟩ − ⟨χ ∣σ(α′)⟩).
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Then ⟨α′V , α′⟩ = 2 for all α′ ∈ R′O, and (R′O)∨ = {α′
V
∶ α′ ∈ R′O}.

Its base (S′O)∨, called the set of restricted simple coroots, can be obtained from the Satake diagram,
which encodes information on the action of σ on R′. Satake diagrams play an important role in the
classification of homogeneous symmetric varieties. For details and the list of all possible Satake diagrams
arising from simple Lie groups, we refer to [41, §26.5] and [36, Table 1]. The Satake diagram of σ can
be constructed as follows.

1. Start with the Dynkin diagram of G′.

2. For every simple root (with respect to B′ and T ′ as before) which is σ-stable, mark the correspond-
ing node by black.

3. Mark the nodes corresponding to σ-unstable simple roots by white.

4. If two σ-unstable simple roots α′i /= α′j satisfy α′i = α′j , then join the corresponding (white) nodes
by a two-headed arrow.

Now put (S′O)∨ ∶= {λ∨ ∶ λ ∈ S′O} where for each λ = α′ ∈ S′O, with a slight abuse of notation, λ∨ is defined
as follows:

1. In the Satake diagram, if α′ represents a white node which is not joined by an arrow and not
adjacent to a black node, put λ∨ ∶= (α′)∨. (This is the case exactly when σ(α′) = −α′.)

2. Otherwise, put λ∨ ∶= (α′)∨ − σ(α′)∨.

See [41, Remark 26.23].

Remark 2.3.10. If R′O is reduced, then there is no α′ ∈ R′ with ⟨(α′)∨, σ(α′)⟩ = 1, hence λV = λ∨ for
all λ ∈ S′O.

Theorem 2.3.11 ([41, Section 26], [43, Section 2.4], [37, Section 2]). In the previous notation, via the
isomorphism E ≃ χ∗(T

′
1) ⊗Q, we have the following identifications:

1. The lattice ΛO is identified with the doubled weight lattice 2 ⋅ (Z⟨(R′O)∨⟩)∗ ⊂ χ(T ′1) ⊗Q.

2. The image ϵ(D(O)) in E is exactly 1
2(S

′
O)
∨.

3. V is identified with the negative Weyl chamber of (R′O)∨ in E.

Moreover, if K ′ is semi-simple, then the map ϵ ∶ D(O) → E is injective. In this case, if D ∈ D(O) is sent
to 1

2 λ∨ for some λ ∈ S′O, then the stabilizer StabG′(D) of the divisor D ⊂ O is

StabG′(D) = P ′{α′j∈S′∶α′j=λ},

i.e. the parabolic subgroup containing B′ and generated by simple roots α′k ∈ S′ such that either α′k = 0
or α′k ∈ S′O ∖ {λ}.

Remark 2.3.12. In general, K ′ is not necessarily semi-simple, and it is possible that the color map ϵ is
not injective. Namely, if G′ is simple, K ′ is not semi-simple and λ∨ ∈ (S′O)

∨ is short (i.e. its length is the
minimum among (R′O)∨), then ϵ−1(λ∨/2) consists of two colors by [41, p. 157]. For example, consider
G′ = SLr+1 (r ≥ 2) and an involution σ ∶ G′ → G′ defined as

σ(g) ∶= I2 ⋅ g ⋅ I2, I2 ∶=
⎛

⎝

−id2×2 0
0 id(r−1)×(r−1)

⎞

⎠
.
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Then

K ′ = (G′)σ =
⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝

M2 0
0 Mr−1

⎞

⎠
∈ SLr+1 ∶Mi ∈ GLi, i = 2, r − 1

⎫⎪⎪
⎬
⎪⎪⎭

= S(GL2 ×GLr−1).

Since K ′ contains a maximal torus of G′ while its semi-simple part (= SL2 × SLr−1) is of rank r − 1, K ′

is not semi-simple. The Satake diagram of O is

if r = 2, if r = 3, and if r ≥ 4,

and the restricted root system R′O is BC1 if r = 2, C2 if r = 3, and BC2 if r ≥ 4. See [36, Table 1]. In the
following, we describe ϵ and the stabilizer of each color:

• If r = 2, then since R′O = BC1, (S′O)∨ = {λ∨} consists of a short coroot. Thus by [41, p. 157], D(O) =
{D1, D2} such that ϵ(D1) = ϵ(D2) = λ∨/2. Moreover, by [37, p. 151–152], up to rearrangement, we
have

StabG′(Dj) = P ′α′j , j = 1, 2.

• If r = 3, then R′O = C2. Put λ1 ∶= α′1 = α′3 and λ2 ∶= α′2, the elements of S′O. In this case, we
have σ(α′1) = −α′3 and σ(α′2) = −α′2. Thus λ∨1 = (α

′
1)
∨ + (α′3)

∨ and λ∨2 = (α
′
2)
∨, hence ⟨λ∨1 ∣λ∨2⟩ = −2.

It means that (S′O)∨ consists of λ∨1 (long) and λ∨2 (short). By [41, p. 157], we have D(O) =
{D1, D+2 , D−2} such that

ϵ(D1) =
1
2

λ∨1 , ϵ(D±2 ) =
1
2

λ∨2 ,

and by [37, p. 151–152],

StabG′(D1) = P ′{α′j∈S′∶α′j
∨=λ∨1}

(= P ′α′1, α′3
), StabG′(D

±
2 ) = P ′α′2 .

• If r ≥ 4, then R′O = BC2. Put λ1 ∶= α′1 = α′r and λ2 ∶= α′2 = α′r−1. Then using [11, Lemma 1.4], one
can check that σ(α′1) = −α′r, while ⟨(α′2)∨, σ(α′2)⟩ = 1. Thus we have

⟨λ∨1 ∣λ
∨
2⟩ = ⟨λ

V
1 ∣λ

V
2 /2⟩ = 2 ⋅ ⟨λ2, λV

1 ⟩ = −2.

That is,
(S′O)

∨
= {λ∨1 (not short), λ∨2 (short)}.

By [41, p. 157], we have D(O) = {D1, D2, Dr−1} such that

ϵ(D1) =
1
2

λ∨1 , ϵ(D2) = ϵ(Dr−1) =
1
2

λ∨2 ,

and by [37, p. 151–152],

StabG′(D1) = P ′{α′j∈S′∶α′j=λ∨1}
(= P ′α′1, α′r

), StabG′(D2) = P ′α′2 , StabG′(Dr−1) = P ′α′r−1
.
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Chapter 3. Geometry of Conics on Adjoint Varieties

In this chapter, we study geometry of conics on Zg. Namely, we show that there is an open G-orbit
in the space of smooth conics on Zg, which can be described in terms of the contact distribution. Then
we prove that it is a G-symmetric variety, and then study B-fixed points in its boundary. From now on,
we assume that dim Zg > 1 (i.e. g /= A1, or equivalently Zg /≃ P1).

3.1 Conics on Adjoint Varieties

Our goal is to study deformation of smooth conics on the adjoint variety Zg ⊂ P(g). Note that the
family of smooth conics on Zg ⊂ P(g) is parametrized by

R2(Zg) ∶= ∐
α̌

Rα̌(Zg)

where α̌ runs over elements of form ∑αi∈N(ρ)mi ⋅ α
∨
i such that mi ∈ Z≥0 and ⟨ρ, α̌⟩ = 2. Namely, if g is

not of type A, then since N(ρ) = {αj0},

R2(Zg) =R(2/⟨ρ ∣αj0 ⟩)⋅α∨j0
(Zg) =

⎧⎪⎪
⎨
⎪⎪⎩

R2⋅α∨j0
(Zg) if g is not of type C,

Rα∨1(Zg) if g = Cr, r ≥ 2.

On the other hand, if g = Ar, r ≥ 2, then since N(ρ) = {α1, αr},

R2(Zg) =R2α∨1(Zg) ⊔Rα∨1+α∨r (Zg) ⊔R2α∨r (Zg).

By taking closures, define subsets

Hg ∶=Rα̌g
(Zg) ⊂ Hilb2m+1(Zg, OP(g)(1)∣Zg

),

Hg ∶=Rα̌g
(Zg) ⊂ Hilbsn

2m+1(Zg, OP(g)(1)∣Zg
),

Cg ∶=Rα̌g
(Zg) ⊂ Chow1, 2(Zg, OP(g)(1)∣Zg

),

CoCg ∶=Rα̌g
(Zg) ⊂CoC(Zg, OP(g)(1)∣Zg

).

where

α̌g ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

α∨1 if g = Cr, r ≥ 2,
α∨1 + α∨r if g = Ar, r ≥ 2,

2α∨j0
otherwise.

By Theorem 2.2.6, these are irreducible subsets. Indeed, by Corollary 2.2.5 and Theorem 2.2.3, each of
them is an irreducible component of the (semi-normalized) Hilbert scheme, the Chow scheme, and the
space of complete conics, respectively. From now on, we consider Hg, Hg, Cg and CoCg as projective
varieties equipped with the reduced scheme structures. Then they admit the natural G-actions, and
G-equivariant birational morphisms

CoCnor
g Hnor

g Cnor
g

CoCsn
g Hg Cg

CoCg Hg

CHnor F Cnor

CHsn F C

CH
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which are isomorphisms over the loci of smooth conics (=Rα̌g
) and reducible conics.

Remark 3.1.1. There is a commutative diagram

Hnor
g Hsn

g Hg

Hnor

g Hsn

g Hg.

Every arrow represents a finite birational morphism, and so in particular, the leftmost arrow Hnor
g →Hnor

g

is an isomorphism. Moreover, all arrows but Hnor
g →Hsn

g and Hnor

g →Hsn

g are bijective, and in particular
Hsn

g → Hsn

g is an isomorphism. However, in general, irreducible components of a semi-normal scheme
are not necessarily semi-normal (see [21, p. 308]), so it is not clear whether the morphism Hsn

g →Hg is
an isomorphism.

Since Rα̌g
is not compact (unless g is of type C; see Subsection 3.1.1), the four compactifications

parametrize singular objects in their boundaries. Nonetheless, recall that their scheme structures are
easy to describe (Proposition 2.2.8).

Definition 3.1.2. Let C be a conic on Zg ⊂ P(g). We say that C is planar if the unique plane containing
it in P(g) is also contained in Zg. Otherwise C is called non-planar.

Remark 3.1.3. Let C ⊂ Zg be a conic.

1. C is a smooth conic, a reducible conic, or a double line by Proposition 2.2.8.

2. If C is a reducible conic, then C admits a smoothing in Zg (see for example [20, Theorem II.7.6]).
That is, every reducible conic on Zg is a member of our four compactifications.

3. If C is planar, then we shall show that its G-conjugacy class is determined by the G-conjugacy
class of the plane spanned by C. See Corollary 3.5.4.

4. By Theorem 2.2.3, the restriction of the Hilbert-Chow morphism FC

Hg ∖ {double lines} →Cg ∖ {double lines}

is an isomorphism. In Subsection 3.1.1–3.1.2, we show that if g is of type A or C, then there is no
double line in Hg, hence FC ∶Hg →Cg is an isomorphism.

Let us introduce two more types of smooth conics, using the G-invariant contact distribution D ⊂

TZg on the adjoint variety.

Definition 3.1.4. Let C be a smooth conic on Zg.

1. C is called a twistor conic if TxC /⊂Dx for every x ∈ C.

2. C is called a contact conic if TxC ⊂Dx for every x ∈ C.

It is well-known that every smooth conic is either a twistor conic or a contact conic. Indeed, if
f ∶ P1 → C ⊂ Zg is a smooth conic, then since TZg/D ≃ OP(g)(1)∣Zg

(Section 2.1), we have a bundle
morphism

OP1(2) ≃ TP1 df
Ð→ f∗(TZg) → f∗(TZg/D) ≃ OP1(2)

which is either an isomorphism or the zero map. In the former case, C is a twistor conic, and in the
latter case, C is a contact conic.
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Example 3.1.5. 1. Let Cρ be the intersection of Zg and a plane

P(Eρ, Hρ, E−ρ) ∶= {[a ⋅Eρ + b ⋅Hρ + c ⋅E−ρ] ∈ P(g) ∶ [a ∶ b ∶ c] ∈ P2
}.

Then Cρ is a smooth conic parametrized by exp(g−ρ) ⋅ o where o ∶= [Eρ] ∈ Zg, hence it is a twistor
conic. Indeed, this conic is a fiber of the twistor fibration constructed in [44]. In particular, R2(Zg)

is non-empty for all g.

2. Every smooth planar conic is a contact conic, since every line on Zg is tangent to D (Subsection
2.2.2). Note that if g = G2, this fact does not provide any example of contact conics since there is
no plane on ZG2 ([23]). In fact, in Theorem 5.2.4, we shall show that there is no contact conic on
ZG2 .

3.1.1 The Case of Symplectic Lie Algebras

Geometry of conics on Zg is particularly simple when g is of type C. To see this, let g = Cr for some
r ≥ 2. Then g = sp(V ) and G = Sp(V ) for a symplectic vector space V of dimension 2r. In this case, the
adjoint representation g is isomorphic to Sym2V as a G-representation, and the morphism

ν ∶ P(V ) → P(Sym2V ), [v] ↦ [v2
]

defines a G-equivariant embedding, hence Zg is the second Veronese embedding ν2(P(V ))(≃ P2r−1). Thus
conics on ν2(P(V )) are exactly lines on P(V ), and

R2(Zg) ≃Hg ≃Cg ≃CoCg ≃ Gr(2, V ).

Observe that dim Gr(2, V ) = 4r−4, and the isotropic Grassmannian IG(2, V ) is a unique closed G-orbit
in Gr(2, V ). In fact, its complement Gr(2, V )∖IG(2, V ) is a single G-orbit, isomorphic to a homogeneous
symmetric variety Sp2r/Sp2 × Sp2r−2, since a non-isotropic 2-subspace is necessarily non-degenerate. In
our terminology, for a conic C ⊂ ν2(P(V )), [C] ∈ IG(2, V ) if and only if C is a contact conic, and
[C] /∈ IG(2, V ) if and only if C is a twistor conic. Also, every conic is non-planar, since ν2(P(V )) does
not contain a linear subspace.

3.1.2 The Case of Special Linear Lie Algebras

In this subsection, we describe compactifications of R2α∨i (Zg) for g = Ar (r ≥ 2) and i = 1, r, i.e.
the components of R2(Zg) different from Rα̌g

(Zg). Let g = sl(V ) and G = SL(V ) where V is an
(r + 1)-dimensional vector space. If we put V1 ∶= V and Vr ∶= V ∗, then the adjoint representation g is
a subrepresentation of gl(V ) ≃ V1 ⊗ Vr. Moreover, for the partial flag variety Fl1, r(V ) ∶= {([x], [l]) ∈

P(V1) × P(Vr) ∶ l(x) = 0} and the Segre embedding

σ ∶ P(V1) × P(Vr) ↪ P(V1 ⊗ Vr) ≃ P(gl(V )), ([x], [l]) ↦ [x⊗ l],

one can show that σ(Fl1, r(V )) ⊂ P(sl(V )) = P(g). Since σ is G-equivariant, σ defines an isomorphism
Zg ≃ Fl1, r(V ) satisfying OP(g)(1)∣Zg

≃ OP(V1⊗Vr)(1)∣Fl1, r(V ).
Consider the natural projection pi ∶ Fl1, r(V ) → P(Vi) for each i = 1, r. Then we have OP(g)(1)∣Zg

≃

p∗1OP(V1)(1) ⊗ p∗rOP(Vr)(1). Thus for any conic C on Fl1, r(V ), one of the following holds:

1. C is of degree 2 with respect to p∗1OP(V1)(1). In this case, we say that C is a (2, 0)-conic.
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2. C is of degree 2 with respect to p∗rOP(Vr)(1). In this case, we say that C is a (0, 2)-conic.

3. C of degree 1 with respect to both p∗1OP(V1)(1) and p∗rOP(Vr)(1). In this case, we say that C is a
(1, 1)-conic.

Observe that a smooth (2, 0)-conic is contracted by pr. Moreover, since V1 is the first fundamental
representation of G, R2α∨1(Zg) parametrizes smooth (2, 0)-conics. Similarly, a smooth (0, 2)-conic is
contracted by p1, and R2α∨r (Zg) parametrizes smooth (0, 2)-conics. Furthermore, a double line cannot
be a (1, 1)-conic, hence every member of Hg is either a smooth conic or a reducible conic. As Rα̌g

(Zg)

parametrizes smooth (1, 1)-conics, we have

FC ∶Hg
≃
Ð→Cg, and CHsn

∶CoCsn
g

≃
Ð→Hsn

g .

The contact structure of Fl1, r(V ) can be described in terms of the projections p1 and pr. For each
point ([x0], [l0]) ∈ Fl1, r(V ), we have

(p1)
−1
([x0]) = [x0] × {[l] ∈ P(Vr) ∶ l(x0) = 0}, (pr)

−1
([l0]) = {[x] ∈ P(V1) ∶ l0(x) = 0} × [l0],

and both of them are linear Pr−1 in P(V1⊗Vr). Thus the tangent spaces of (p1)
−1([x0]) and (pr)

−1([l0])

generate a (2r − 2)-dimensional subspace in T([x0], [l0])Fl1, n+1(V ), which is invariant under the action of
StabG([x0], [l0]), hence it is the contact hyperplane. In particular, smooth (2, 0)- or (0, 2)-conics exist
only when r ≥ 3, and in this case, they are planar and contact conics.

To study conics contracted by pi for i = 1, r, assume that r ≥ 3, and define

Hi ∶=R2α∨i ⊂ Hilbsn
2m+1(Zg, OP(g)(1)∣Zg

),

Ci ∶=R2α∨i ⊂ Chow1, 2(Zg, OP(g)(1)∣Zg
),

CoCi ∶=R2α∨i ⊂CoC(Zg, OP(g)(1)∣Zg
),

Hi ∶=R2α∨i ⊂ Hilb2m+1(Zg, OP(g)(1)∣Zg
).

As before, these are projective G-varieties. Moreover, since planes spanned by smooth (2, 0)-conics and
by smooth (0, 2)-conics are contracted by pr and by p1, respectively, we have a diagram of G-equivariant
morphisms

Hi Ci

CoCi Hi Pi

F C

CH

where Pi is the space of planes on Fl1, r(V ) contracted by pi′ for i′ ∈ {1, r}∖{i}. In fact, by [23, Theorem
4.9], Pi is a rational homogeneous space under the natural G-action, and

P1 ≃ Fl3, r(V ), Pr ≃ Fl1, r−2(V ).

(In particular, dim Pi = 4r−9.) Thus for a plane [PWi] ∈ Pi (Wi ≤ V1⊗Vr, dim Wi = 3) and its stabilizer
Qi ∶= StabG(Wi), Qi acts on the plane PWi transitively, hence there are bijective morphisms

G ×Qi P(Sym2W ∗
i ) →Hi, G ×Qi CoC(PWi) →CoCi,

which induce isomorphisms

G ×Qi P(Sym2W ∗
i ) ≃Hnor

i , G ×Qi CoC(PWi) ≃CoCnor
i .
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Indeed, Qi acts on Wi via a surjection Qi → GL(Wi), which induces a spherical action of the Levi
subgroup of Qi on P(Sym2W ∗

i ) and CoC(P(Wi)). In other words, the homogeneous fiber bundles
G ×Qi P(Sym2W ∗

i ) and G ×Qi CoC(PWi) are parabolic inductions of Pi, in the sense of [41, Definition
5.9 and §20.6]. By [41, Proposition 5.10] they are G-spherical varieties of dimension 4r−4 and of rank 2.
Therefore by Proposition 2.3.7, Hi has exactly three orbits, consisting of smooth conics, reducible conics
and double lines, respectively, while CoCi has exactly four orbits, corresponding to the Qi-orbits in
CoC(PWi) (see Subsection 2.2.3). As Hnor

i is smooth, the morphism Hnor
i →Hnor

i is an isomorphism.
It means that the normalization Cnor

i is a G-spherical variety consisting of three G-orbits, consisting of
smooth conics, reducible conics and double lines, respectively.

The previous discussion shows that the compactifications of R2α∨i are related via the following
morphisms

CoCnor
i (≃ G ×Qi CoC(PWi)) Hnor

i ≃Hnor
i (≃ G ×Qi P(Sym2W ∗

i )) Cnor
i

Pi(≃ G/Qi)

CHnor F Cnor

where each horizontal arrow is birational. Furthermore, CoCnor
i , Hnor

i and Cnor
i have unique closed

G-orbits, isomorphic to
Fl1, 2, 3, r(V ), Fl2, 3, r(V ), and Fl2, r(V ),

respectively when i = 1, and isomorphic to

Fl1, r−2, r−1, r(V ), Fl1, r−2, r−1(V ), and Fl1, r−1(V ),

respectively when i = r. (For example, for Hnor
i and Cnor

i , the unique closed G-orbits are the loci of
double lines.) In particular, the morphism CHnor ∶Hnor

i →Cnor
i is an isomorphism if and only if r = 3.

Remark 3.1.6. Alternatively, Hnor
i can be described as follows. Recall that for i′ ∈ {1, r}∖{i}, smooth

conics parametrized by R2α∨i (Zg) are contracted by pi′ . Consider the (dualized) Euler sequence over
P(Vi′)

0→ Ei′ → Vi ⊗OP(Vi′)(−1) → OP(Vi′) → 0.

Here, OP(Vi′)(−1) is the tautological line bundle over P(Vi′), the quotient map is given by the natural
pairing (which makes sense since Vi ≃ V ∗i′ ), and Ei′ is a vector bundle of rank r defined as the kernel.
By the above description of the fibers of pi′ , we see that Fl1, n+1(V ) ≃ P(Ei′) as projective bundles over
P(Vi′) via a G-equivariant isomorphism. Consider the Grassmannian bundle GrP(Vi′)(3, Ei′) over P(Vi′),
equipped with the universal subbundle Si′ . That is, for each x ∈ P(Vi′), the fiber of GrP(Vi′)(3, Ei′) at
x is the usual Grassmannian Gr(3, Ei′, x) and the restriction Si′ ∣x is the universal bundle of subspaces
associated to Gr(3, Ei′, x). Since GrP(Vi′)(3, Ei′) parametrizes 2-planes on the fibers of pi′ , the projective
bundle Gi′ ∶= P(Sym2

S∗i′) over GrP(Vi′)(3, Ei′) parametrizes conics contained in the fibers of pi′ . Indeed,
Gi′ is isomorphic to the normalization Hnor

i (as Gi′ is smooth and the natural map Gi′ →Hi is bijective).

Now we have a description of the space of (2, 0)-conics and (0, 2)-conics. For (1, 1)-conics, in
Proposition 5.1.1, we shall give a blowing-up construction using our main theorem (Theorem 3.2.2).

3.2 Main Theorems

Now we state our main theorems. Recall that n is the integer defined by 2n + 1 = dim Zg(> 1).
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Theorem 3.2.1. Twistor conics form an open G-orbit in Rα̌g
, isomorphic to a 4n-dimensional homo-

geneous symmetric variety Og ∶= G/Gσ for some involution σ ∶ G→ G. The Satake diagram of σ is given
in Table 3.1.

In the second column of Table 3.1, we denote by D1 the 1-dimensional toral Lie algebra (≃ so2). In
particular, Gσ is semi-simple if and only if g /= Ar for all r ≥ 2.

Theorem 3.2.2. The normalizations Hnor
g , Cnor

g and CoCnor
g are projective G-symmetric varieties

equipped with the G-equivariant birational morphisms

CoCnor
g

CHnor

ÐÐÐÐ→Hnor
g

F Cnor

ÐÐÐÐ→Cnor
g .

Moreover, as Og-embeddings, their colored fans are given as follows.

1. Cnor
g is a simple Og-embedding with its colored cone in Table 3.2.

2. The colored fan of Hnor
g consists of colored cones listed in Table 3.3 and their colored faces.

3. The colored fan of CoCnor
g consists of colored cones listed in Table 3.4 and their colored faces.

The proofs of Theorem 3.2.1 and Theorem 3.2.2 are given in Section 3.3 and Chapter 4, respectively.
Tables 3.2–3.4 show that Hnor

g (and CoCnor
g ) is simple as a G-spherical variety if and only if g is

of type A, type C or an exceptional type. Otherwise, the number of closed orbits is 3 if g =D4, and 2 if
g = soN for N ≥ 7 and N /= 8.

Let us explain the notation in Tables 3.1–3.3, assuming Theorem 3.2.1. As in Subsection 2.3.2, let
T ′ be a maximally σ-split torus, and B′ be a Borel subgroup containing T ′ such that for every positive
root α′ with respect to B′ satisfying α′ /= 0, we have σ(α′) < 0. Then there is g ∈ G such that T ′ = g ⋅T ⋅g−1

and B′ = g ⋅B ⋅ g−1. (To see this, choose any g0 ∈ G such that T ′ = g0 ⋅ T ⋅ g
−1
0 . Then there is w ∈ N(T ′)

such that B′ = w ⋅ (g0 ⋅B ⋅g
−1
0 ) ⋅w

−1 since N(T ′) acts transitively on the set of Borel subgroups containing
T ′. So we may put g ∶= w ⋅ g0.) Then we define the ingredients in Subsection 2.3.2, using T ′ and B′. For
example, the root system R′ and its simple roots S′ are given by

R′ = R ○Adg−1 = {α′ ∶= α ○Adg−1 ∶ α ∈ R} , S′ = S ○Adg−1 = {α′i ∶= αi ○Adg−1 ∶ αi ∈ S} .

We index restricted simple roots S′Og
= {λ1, λ2, . . . , λm} as in the last column of Table 3.1. When R′Og

is reduced, the indexing agrees with [32, Reference Chapter, Table 1]. For B′-colors of Og, i.e. elements
in D(Og), we use the following notation:

• If g = Ar (r ≥ 2), then Og is indeed isomorphic to G′/K ′ given in Remark 2.3.12. For S′Og
and

D(Og), we keep the notation of Remark 2.3.12.

• If g /= Ar (r ≥ 2), then by Theorem 3.2.1, K = Gσ is semi-simple, hence the map ϵ ∶ D(Og) → E is
bijective onto 1

2 ⋅ (S
′
Og
)∨ by Theorem 2.3.11. So we put Di ∶= ϵ−1 (λ∨i /2) ∈ D(Og).

In this notation, the (positive) Weyl chamber is given by −V = Q≥0⟨γ1, . . . γm⟩ where γj ’s are defined
by the relations ⟨λi, γj⟩ = δij . If g is of type A or C, then since the rank of R′Og

is at most 2, {γj} can
be easily computed. In other cases, since R′Og

is reduced, the expression of γj in terms of the restricted
simple coroots (S′Og

)∨ = {λ∨1 , . . . , λ∨m} can be read off from the jth rows of the matrices in [32, Reference
Chapter, Table 2]. In fact, the ith column (c1i ⋯ cmi)

t of the matrix for R′Og
means

πi =
m

∑
k=1

cki ⋅ λk
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g gσ(=Lie algebra of Gσ) Satake Diagram of Og R′Og
S′Og

Ar
Ar−2 ⊕A1 ⊕D1 BC2

λ1 = α′1 = α′r

(r ≥ 4) λ2 = α′2 = α′r−1

A3 A1 ⊕A1 ⊕D1 C2
λ1 = α′1 = α′3

λ2 = α′2

A2 A1 ⊕D1 BC1 λ = α′1 = α′2

Cr
Cr−1 ⊕A1 1 2 r

BC1 λ = α′2(r ≥ 3)

C2 A1 ⊕A1 1 2 A1 λ = α′2

Br
Br−2 ⊕A1 ⊕A1 1 4 r

B4 λi = α′i (1 ≤ i ≤ 4)
(r ≥ 4)

B3 A1 ⊕A1 ⊕A1 1 2 3 B3 λi = α′i (1 ≤ i ≤ 3)

Dr
Dr−2 ⊕A1 ⊕A1 1 4

r − 1

r
B4 λi = α′i (1 ≤ i ≤ 4)

(r ≥ 6)

D5 D3 ⊕A1 ⊕A1 1

4

5
B4

λi = α′i (1 ≤ i ≤ 3)
λ4 = α′4 = α′5

D4 A1 ⊕A1 ⊕A1 ⊕A1 12

3

4
D4 λi = α′i (1 ≤ i ≤ 4)

E6 A5 ⊕A1 1
6

2 34 5 F4

λ1 = α′1 = α′5
λ2 = α′2 = α′4

λ3 = α′3
λ4 = α′6

E7 D6 ⊕A1
6542

F4

λ1 = α′2
λ2 = α′4
λ3 = α′5
λ4 = α′6

E8 E7 ⊕A1
7321

F4

λ1 = α′7
λ2 = α′3
λ3 = α′2
λ4 = α′1

F4 C3 ⊕A1 4321 F4 λi = α′i (1 ≤ i ≤ 4)

G2 A1 ⊕A1 21 G2 λi = α′i (1 ≤ i ≤ 2)

Table 3.1: Satake diagram and the restricted root system of Og.

27



g (C(Cnor
g ), F(Cnor

g ))

Ar (r ≥ 3) (Q≥0⟨−γ1, −γ2⟩, ∅)
A2,

(Q≥0⟨−γ⟩, ∅)
Cr (r ≥ 2)
Br (r ≥ 4),

(Q≥0⟨−γ1, −γ2, −γ4, λ∨2 , λ∨4⟩, {D2, D4})
Dr (r ≥ 5)

B3 (Q≥0⟨−γ1, −γ2, −γ3, λ∨2⟩, {D2})
D4 (Q≥0⟨−γ1, −γ2, −γ3, −γ4, λ∨2⟩, {D2})

Er (r = 6, 7, 8),
(Q≥0⟨−γ1, −γ4, λ∨1 , λ∨2 , λ∨4⟩, {D1, D2, D4})

F4

G2 (Q≥0⟨−γ2, λ∨2⟩, {D2})

Table 3.2: Colored cone of Cnor
g in Q⟨(R′Og

)∨⟩.

g Maximal Colored Cones in F(Hnor
g )

Ar (r ≥ 3) (Q≥0⟨−γ1, −γ2⟩, ∅)
A2,

(Q≥0⟨−γ⟩, ∅)
Cr (r ≥ 2)
Br (r ≥ 4),

(Q≥0⟨−γ2, −γ4, λ∨2 , λ∨4⟩, {D2, D4}), (Q≥0⟨−γ1, −γ2, −γ4, λ∨2⟩, {D2})
Dr (r ≥ 5)

B3 (Q≥0⟨−γi, −γ2, λ∨2⟩, {D2}) for i = 1, 3
D4 (Q≥0⟨−γj , λ∨2 ∶ j ∈ {1, 2, 3, 4} ∖ {i}⟩, {D2}) for i = 1, 3, 4

Er (r = 6, 7, 8),
(Q≥0⟨−γ1, −γ4, λ∨1 , λ∨4⟩, {D1, D4})

F4

G2 (Q≥0⟨−γ2, λ∨2⟩, {D2})

Table 3.3: Colored fan of Hnor
g in Q⟨(R′Og

)∨⟩.

g Maximal Colored Cones in F(CoCnor
g )

Ar (r ≥ 3) (Q≥0⟨−γ1, −γ2⟩, ∅)
A2,

(Q≥0⟨−γ⟩, ∅)
Cr (r ≥ 2)
Br (r ≥ 4),

(Q≥0⟨−γ2, −γ4, −γ1 − γ3, λ∨4⟩, {D4}), (Q≥0⟨−γ1, −γ2, −γ4, −γ1 − γ3⟩, ∅)
Dr (r ≥ 5)

B3 (Q≥0⟨−γi, −γ2, −γ1 − γ3⟩, ∅) for i = 1, 3
D4 (Q≥0⟨−γj , −γ1 − γ3 − γ4 ∶ j ∈ {1, 2, 3, 4} ∖ {i}⟩, ∅) for i = 1, 3, 4

Er (r = 6, 7, 8),
(Q≥0⟨−γ1, −γ3, −γ4, λ∨1⟩, {D1})

F4

G2 (Q≥0⟨−γ1, −γ2⟩, ∅)

Table 3.4: Colored fan of CoCnor
g in Q⟨(R′Og

)∨⟩.
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where πi is the ith fundamental weight of R′Og
, hence if γj = ∑

m
l=1 dlj ⋅ λ

∨
l , then

dlj = ⟨πl, γj⟩ = cjl,

i.e. the coefficients cj1, . . . , cjm of γj form the jth row. We summarize the result as follows.

• If g = Ar (r ≥ 4), then R′Og
= BC2 and

γ1 = λ∨1 + λ∨2 ,

γ2 = λ∨1 + 2λ∨2

where λ∨1(= λV
1 ) and λ∨2(= λV

2 /2) are basis elements of (R′Og
)∨ (see Remark 2.3.12).

• If g = A3, then R′Og
= C2 and

γ1 = λ∨1 + λ∨2 ,

γ2 =
1
2

λ∨1 + λ∨2 .

• If g = A2 or Cr (r ≥ 2), then R′Og
= BC1, and γ = γ1 = λ∨ where λ∨(= λV /2) means the basis

element of (R′Og
)∨ (hence ⟨λ, λ∨⟩ = 1; see Remark 2.3.12).

• If g = Br≥4 or Dr≥5, then R′Og
= B4 and

γ1 ∶= λ∨1 + λ∨2 + λ∨3 +
1
2

λ∨4 ,

γ2 ∶= λ∨1 + 2λ∨2 + 2λ∨3 + λ∨4 ,

γ3 ∶= λ∨1 + 2λ∨2 + 3λ∨3 +
3
2

λ∨4 ,

γ4 ∶= λ∨1 + 2λ∨2 + 3λ∨3 + 2λ∨4 .

• If g = B3, then R′Og
= B3 and

γ1 ∶= λ∨1 + λ∨2 +
1
2

λ∨3 ,

γ2 ∶= λ∨1 + 2λ∨2 + λ∨3 ,

γ3 ∶= λ∨1 + 2λ∨2 +
3
2

λ∨3 .

• If g =D4, then R′Og
=D4 and

γ1 ∶= λ∨1 + λ∨2 +
1
2

λ∨3 +
1
2

λ∨4 ,

γ2 ∶= λ∨1 + 2λ∨2 + λ∨3 + λ∨4 ,

γ3 ∶=
1
2

λ∨1 + λ∨2 + λ∨3 +
1
2

λ∨4 ,

γ4 ∶=
1
2

λ∨1 + λ∨2 +
1
2

λ∨3 + λ∨4 .

• If g is of an exceptional type other than G2, then R′Og
= F4 and

γ1 ∶= 2λ∨1 + 3λ∨2 + 4λ∨3 + 2λ∨4 ,

γ2 ∶= 3λ∨1 + 6λ∨2 + 8λ∨3 + 4λ∨4 ,

γ3 ∶= 2λ∨1 + 4λ∨2 + 6λ∨3 + 3λ∨4 ,

γ4 ∶= λ∨1 + 2λ∨2 + 3λ∨3 + 2λ∨4 .
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• If g = G2, then R′Og
= G2 and

γ1 ∶= 2λ∨1 + 3λ∨2 , γ2 ∶= λ∨1 + 2λ∨2 .

Let us close this section after collecting colored faces of the colored cones in Table 3.2 and Table
3.3. Since each colored face (C, F) is determined by its underlying cone C, it suffices to write C. In the
following list, we classify the colored faces according to their dimensions.

1. The nonzero non-maximal elements in the colored fan defined by Table 3.2:

(a) When g = Ar (r ≥ 3):

i. dim = 1: Q≥0⟨−γ1⟩, Q≥0⟨−γ2⟩.

(b) When g = A2 or Cr (r ≥ 2), there is no nonzero proper colored face.

(c) When g is Br≥4 or Dr≥5:

i. dim = 3: Q≥0⟨−γ1, −γ2, −γ4⟩, Q≥0⟨−γ2, −γ4, λ∨4⟩.
ii. dim = 2: Q≥0⟨−γi, −γj⟩ for i /= j ∈ {1, 2, 4}, Q≥0⟨−γ4, λ∨4⟩.
iii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 2, 4.

(d) When g = B3:

i. dim = 2: Q≥0⟨−γ1, −γ2⟩, Q≥0⟨−γ2, −γ3⟩.
ii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 2, 3.

(e) When g =D4:

i. dim = 3: Q≥0⟨−γ2, −γi, −γj⟩ for i /= j ∈ {1, 3, 4}.
ii. dim = 2: Q≥0⟨−γi, −γj⟩ for i /= j ∈ {1, 2, 3, 4}.
iii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 2, 3, 4.

(f) When g is one of E6, E7, E8 and F4:

i. dim = 3: Q≥0⟨−γ1, −γ4, λ∨1⟩.
ii. dim = 2: Q≥0⟨−γ1, −γ4⟩, Q≥0⟨−γ1, λ∨1⟩.
iii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 4.

(g) When g = G2:

i. dim = 1: Q≥0⟨−γ2⟩.

2. The nonzero non-maximal elements in the colored fan defined by Table 3.3:

(a) When g = Ar (r ≥ 3):

i. dim = 1: Q≥0⟨−γ1⟩, Q≥0⟨−γ2⟩.

(b) When g = A2 or Cr (r ≥ 2), there is no nonzero proper colored face.

(c) When g is Br≥4 or Dr≥5:

i. dim = 3: Q≥0⟨−γ1, −γ2, −γ4⟩, Q≥0⟨−γ2, −γ4, λ∨4⟩, Q≥0⟨−γ2, −γi, λ∨2⟩ for i ∈ {1, 4}.
ii. dim = 2: Q≥0⟨−γi, −γj⟩ for i /= j ∈ {1, 2, 4}, Q≥0⟨−γk, λ∨k⟩ for k ∈ {2, 4}.
iii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 2, 4.

(d) When g = B3:
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i. dim = 2: Q≥0⟨−γ1, −γ2⟩, Q≥0⟨−γ2, −γ3⟩, Q≥0⟨−γ2, λ∨2⟩.
ii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 2, 3.

(e) When g =D4:

i. dim = 3: Q≥0⟨−γ2, −γi, −γj⟩ for i /= j ∈ {1, 3, 4}, Q≥0⟨−γ2, −γk, λ∨2⟩ for k ∈ {1, 3, 4}.
ii. dim = 2: Q≥0⟨−γi, −γj⟩ for i /= j ∈ {1, 2, 3, 4}, Q≥0⟨−γ2, λ∨2⟩.
iii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 2, 3, 4.

(f) When g is one of E6, E7, E8 and F4:

i. dim = 3: Q≥0⟨−γ1, −γ4, λ∨1⟩, Q≥0⟨−γ1, −γ4, λ∨4⟩.
ii. dim = 2: Q≥0⟨−γ1, −γ4⟩, Q≥0⟨−γ1, λ∨1⟩, Q≥0⟨−γ4, λ∨4⟩.
iii. dim = 1: Q≥0⟨−γi⟩ for i = 1, 4.

(g) When g = G2:

i. dim = 1: Q≥0⟨−γ2⟩.

3.3 Sphericality of Space of Twistor Conics

In this section, we prove Theorem 3.2.1, and that in every tangent direction off the contact distri-
bution, there is exactly one twistor conic.

Lemma 3.3.1 ([17, Lemma 5]). The unipotent radical Ru(P ) of the isotropy group P at o ∈ Zg acts
transitively on the open subset P(ToZg) ∖ P(Do) in the projectivized tangent space.

Proof. This statement is shown in the proof of [17, Lemma 5], in the case where g is not of type A or C.
In fact, its proof works for all Zg. For the sake of completeness, let us record the proof for all Zg.

Recall the contact gradation (see Section 2.1)

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, p = g0, gi = ⊕
⟨α ∣ρ⟩=i

gi, ∀i /= 0.

Observe that if α ∈ R with ⟨α ∣ρ⟩ = ±1, then α ∓ ρ is also a root such that ⟨α ∓ ρ ∣ρ⟩ = ∓1. Thus
[g−ρ, g1] = g−1. Since

ToZg ≃ g/p, Do ≃ g
−1
/p,

we see that [g−ρ] ∈ P(ToZg) ∖ P(Do), and its orbit under the Ru(P )(= exp(g1))-action is open in
P(ToZg)∖P(Do). Furthermore, since P(Do) is a hyperplane, P(ToZg)∖P(Do) is an affine space (≃ C2n),
hence every Ru(P )-orbit is closed by [5, Proposition 4.10]. Therefore Ru(P )⋅[g−ρ] = P(ToZg)∖P(Do).

Lemma 3.3.2. 1. The normal bundle of a twistor conic in Zg is isomorphic to OP1(1)⊕2n.

2. dim Rα̌g
(Zg) = 4n.

3. The locus of twistor conics is an open G-orbit in Rα̌g
(Zg).

Proof. Recall that Rα̌g
(Zg) is an open subscheme of the Hilbert scheme (Corollary 2.2.5), containing the

locus of twistor conics (Subsection 3.1.2). Let C be a twistor conic and f ∶ P1 → C ⊂ Zg an embedding.
By Lemma 3.3.1 and [20, Theorem II.3.11], f is free over 0↦ f(0), i.e.

f∗TZg ≃
2n+1
⊕
i=1
OP1(ai), for some a1 ≥ ⋯ ≥ a2n+1 > 0.

31



Since the anti-canonical bundle K−1
Zg

is isomorphic to OP(g)(n+1)∣Zg
(see [24]) and C is a conic, we have

2(n + 1) = degP1 f∗K−1
Zg
= degP1 f∗TZg =

2n+1
∑
i=1

ai.

This is possible only if a1 = 2 and a2 = ⋯ = a2n+1 = 1, hence the normal bundle of C is isomorphic to
OP1(1)⊕2n. In particular, the dimension of the Hilbert scheme at [C] is 4n, and so dim Rα̌g

(Zg) = 4n.
Now consider the space Hombir(P1, Zg) of morphisms from P1 to Zg which are birational onto their

images. Let V be the closure of the G × Aut(P1)-orbit containing [f] in Hombir(P1, Zg). By Lemma
3.3.1, for arbitrary x ∈ Zg, Locus(V, 0↦ x) is open in Zg. Thus by the proof of [20, Proposition IV.2.5],
for general points x and y in Zg, we have

dim V = dim{[h] ∈ V ∶ h(0) = x, h(∞) = y} + dim Locus(V ) + dim Locus(V, 0↦ x)

≥ 4n + 3.

Therefore by [20, Theorem II.2.15], the G-orbit containing [C] in the Chow scheme is at least 4n-
dimensional, hence each orbit containing a twistor conic is (Zariski) open in Rα̌g

(Zg). Since Rα̌g
(Zg)

is irreducible (Theorem 2.2.6), all twistor conics are in the same G-orbit.

Lemma 3.3.3. The stabilizer StabG(Cρ) of the twistor conic Cρ = Zg ∩ P(Eρ, Hρ, E−ρ) introduced in
Example 3.1.5 is the connected Lie subgroup K of G associated to the Lie subalgebra

k ∶= g0 ⊕ g2 ⊕ g−2.

In particular, StabG(Cρ) is a reductive subgroup of same rank with G, and the Dynkin diagram of its
semi-simple part can be obtained by deleting the nodes adjacent to −ρ in the extended Dynkin diagram of
g (Table 2.1).

Proof. Observe that g ∈ G stabilizes Cρ if and only if it stabilizes P(Eρ, Hρ, E−ρ). Thus the Lie algebra k

is contained in the Lie algebra of StabG(Cρ), hence K ⊂ StabG(Cρ). For the converse, let g ∈ StabG(Cρ),
and then claim that g ∈ K. Observe that the sl2 algebra C ⋅Hρ ⊕ gρ ⊕ g−ρ is contained in k, and the
corresponding SL2 acts transitively on Cρ. Thus we may assume that g fixes o ∈ Cρ, i.e. g ∈ P . Now
consider the Levi decomposition P = Ru(P ) ⋊ L where Ru(P ) is the unipotent radical of P and L is
the standard Levi subgroup. That is, the Lie algebras of Ru(P ) and L are given by g1 and by g0,
respectively. Since L ⊂ K, we may assume that g ∈ Ru(P ), say g = exp(X) for some X ∈ g1. Note
that since g = exp(X) is unipotent, exp(tX) ∈ StabG(Cρ) ∩ P for every t ∈ C, hence exp(tX) stabilizes
ToCρ ≃ g−ρ mod p in ToZg ≃ g/p. Therefore

[X, g−ρ] mod p ⊂ g−ρ mod p in g/p.

This is possible only if X ∈ gρ, hence g ∈K.

Theorem 3.3.4. Let v be a nonzero tangent vector of Zg which does not belong to the contact distribution
D. Then there is exactly one twistor conic tangent to v.

Proof. By Lemma 3.3.1, we may assume that v ∈ ToCρ. Suppose that there is a twistor conic C tangent
to v at o. By Lemma 3.3.2, there is g ∈ G such that C = g ⋅Cρ. We claim that g is indeed contained in
K = StabG(Cρ). Since K contains the Lie subgroup corresponding to C ⋅Hρ ⊕ gρ ⊕ g−ρ, we may assume
that g fixes o, i.e. g ∈ P . Since the tangent directions of C and Cρ coincide, g stabilizes ToCρ, hence by
repeating the argument in the proof of Lemma 3.3.3, we conclude that g ∈K.
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Proposition 3.3.5. There is an involution σ ∶ G→ G such that the fixed point subgroup Gσ is K.

Proof. By the proof of [44, Theorem 5.4], there is an inner involution on a real form of g such that the
(+1)-eigenspace is a real form of k. By taking its C-linear extension over g, since G is simply connected,
we obtain a holomorphic involution σ ∶ G→ G, and the (+1)-eigenspace of its differential at the identity
element is k. Since Gσ is connected ([39, Theorem 8.1]), we have Gσ =K.

Proof of Theorem 3.2.1. By Lemma 3.3.2, Lemma 3.3.3 and Proposition 3.3.5, twistor conics form an
open orbit in Rα̌g

(Zg), isomorphic to the homogeneous symmetric variety Og ∶= G/Gσ of dimension 4n.
From Lemma 3.3.3 and the classification of Satake diagrams for simple Lie algebras in [36, Table 1] (see
also [41, Table 26.3]), we easily obtain the Satake diagram of Og for each g. (Note that SO4 is of type
A1 ×A1 and SO3 is of type A1.)

Remark 3.3.6. If g is either A2 or of type C, then by Theorem 3.2.1, the reduced root system is of
rank 1 and the image of the color map is not contained in the valuation cone V. Thus there is a unique
G-equivariant completion of Og, which is associated to the colored cone (V, ∅). In particular, Theorem
3.2.2 for g = A2, Cr (r ≥ 2) follows.

3.4 Tangent Directions of Contact Conics

Next, we study geometry of contact conics. Namely, we find an equation satisfied by tangent vectors
of contact conics. Using this, we show that when g is not of type C, there is no smooth conic in a general
direction of D, while tangent directions of twistor conics dominate P(ToZg) ∖ P(Do) by Theorem 3.3.4.
(Observe that if g is of type C, then Zg = ν2(P2n+1) and there is a smooth conic in every direction. See
Subsection 3.1.1.)

In this section, every argument is based on Lie theoretic computation, and independent of spherical
geometry. For the sake of simplicity, we choose root vectors {Eα ∈ gα} of g as in [14, Theorem 5.5, Ch.
III]. Namely, our root vectors satisfy

[Eα, E−α] =Hα, ∀α ∈ R

and
(Nα, β)

2
=

q(1 − p)

2
⋅ ⟨α, α⟩ ∀α, β ∈ R satisfying α + β ∈ R

where
p ∶=min{m ∈ Z ∶ β +mα ∈ R} and q ∶=max{m ∈ Z ∶ β +mα ∈ R}.

Proposition 3.4.1. For nonzero v ∈ Do, there is a line or a smooth conic tangent to v if and only if v

satisfies
[v, [v, [v, Eρ]]] = 0

after identifying v with an element in g via the vector space isomorphism Do ≃ g−1.

Proof. Note that [v, Eρ] /= 0 in g whenever v ∈Do ∖ {0}. If [v, [v, [v, Eρ]]] = 0, then

exp(t ⋅ v) ⋅ o = [Eρ + t ⋅ [v, Eρ] +
t2

2
⋅ [v, [v, Eρ]]] ∈ P(g), ∀t ∈ C.

It parametrizes a line if [v, [v, Eρ]] = 0. If [v, [v, Eρ]] /= 0, then since Eρ(∈ g2), [v, Eρ](∈ g1) and
[v, [v, Eρ]](∈ g0) are linearly independent, it parametrizes a smooth conic.
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Conversely, assume that there is a line or smooth conic C in Zg such that o ∈ C and v ∈ ToC.
Suppose that C is a line. For α ∈ N(ρ), it can be easily seen that [E−α, [E−α, Eρ]] = 0, hence there
exists a line in direction [g−α] ∈ P(Do). By Theorem 2.2.7, there exists p ∈ L such that Adp(v) ∈ g−α for
some α ∈ N(ρ) and the standard Levi subgroup L of P (i.e. TeL = g0). Thus

Adp([v, [v, Eρ]]) ∈ [g−α, [g−α, gρ]] = 0.

Thus we may assume that C is a conic. Then since the exponential map defines a local isomorphism
near the origin

ToZg ≃ g−2 ⊕ g−1 → Zg, X ↦ exp(X) ⋅ o,

there is a holomorphic map F ∶ t↦ F (t) ∈ g−2 ⊕ g−1 such that F (0) = 0, F ′(0) = v and

exp(F (t)) ⋅ o, ∀t near 0 ∈ C

is a local parametrization of C near o. For all t near 0 ∈ C,

exp(F (t)) ⋅ o = [Eρ +
∞
∑
k=1

1
k!
(adF (t))

k
(Eρ)] .

Since F (t) ∈ g−2 ⊕ g−1,

(adF (t))
k
(Eρ) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C ⋅Hρ ⊕ g1 (if k = 1);
g−2 ⊕ g−1 ⊕ g0 (if k = 2);
g−2 ⊕ g−1 (if k = 3);
g−ρ (if k = 4);
0 (if k ≥ 5).

Therefore in the affine chart Eρ + (t⊕⊕α/=ρ gα) ≃ t⊕⊕α/=ρ gα of P(g), exp(F (t)) ⋅ o is given by
4
∑
k=1

1
k!
(adF (t))

k
(Eρ).

For sufficiently small t, we have the Taylor expansion of F

F (t) =
∞
∑
i=1

ti

i!
F (i), F (i) ∈ g−2 ⊕ g−1, F (1) ∶= v,

and
4
∑
k=1

1
k!
(adF (t))

k
(Eρ)

=
4
∑
k=1

∑
i1, ..., ik≥1

ti1+⋯+ik

k! ⋅ i1!⋯ik!
[F (i1), ⋯[F (ik−1), [F (ik), Eρ]]⋯]

= t ⋅ [F (1), Eρ]

+ t2
⋅ (

1
2
[F (2), Eρ] +

1
2
[F (1), [F (1), Eρ]])

+ t3
⋅ (

1
6
[F (3), Eρ] +

1
2 ⋅ 2
([F (1), [F (2), Eρ]] + [F

(2), [F (1), Eρ]]) +
1
6
[F (1), [F (1), [F (1), Eρ]]])

+ t4
⋅ (

1
24
[F (4), Eρ] +

1
2
(

1
6
[F (1), [F (3), Eρ]] +

1
4
[F (2), [F (2), Eρ]] +

1
6
[F (3), [F (1), Eρ]])

+
1

6 ⋅ 2
([F (1), [F (1), [F (2), Eρ]]] + [F

(1), [F (2), [F (1), Eρ]]] + [F
(2), [F (1), [F (1), Eρ]]])

+
1
24
[F (1), [F (1), [F (1), [F (1), Eρ]]]])

+O(t5
).
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The plane spanned by C in P(g) can be written as P(gρ ⊕ V ) for some 2-dimensional subspace V ≤

t⊕⊕α/=ρ gα. Then the intersection of the plane spanned by C and the affine open subset Eρ+(t⊕⊕α/=ρ gα)

is Eρ + V , and so all derivatives of ∑4
k=1

1
k!(adF (t))

k(Eρ) at t = 0 are elements of V . Consider the first
and second derivatives

[F (1), Eρ], [F (2), Eρ] + [F
(1), [F (1), Eρ]].

Assume that the three vectors

Eρ, [F (1), Eρ], [F (2), Eρ] + [F
(1), [F (1), Eρ]]

are linearly dependent in g. Since

[F (1), Eρ] = [v, Eρ] ∈ g1 ∖ {0},

[F (1), [F (1), Eρ]] ∈ g0,

and
[F (2), Eρ] ∈ C ⋅Hρ ⊕ g1,

[F (1), Eρ] and [F (2), Eρ] + [F
(1), [F (1), Eρ]] are linearly dependent, hence

[v, [v, Eρ]] = [F
(1), [F (1), Eρ]] ∈ C ⋅Hρ.

Let us write [v, [v, Eρ]] = c ⋅Hρ for some c ∈ C. Note that for every α ∈ R with ⟨α ∣ρ⟩ = −1, [Hρ, Eα] =

⟨α, ρ⟩ ⋅Eα = −
⟨ρ, ρ⟩

2 ⋅Eα, hence

[Hρ, v] = −
⟨ρ, ρ⟩

2
⋅ v. (3.1)

By the invariance of the Killing form under the adjoint representation,

c ⋅ ⟨Hρ, Hρ⟩ = ⟨Hρ, [v, [v, Eρ]]⟩ = ⟨[[Hρ, v], v], Eρ⟩ = 0,

hence c = 0 and [v, [v, Eρ]] = 0.
Thus we may assume that the three vectors are linearly independent. That is, the plane spanned

by C is
P(Eρ, [F (1), Eρ], [F

(2), Eρ] + [F
(1), [F (1), Eρ]])

and its intersection with the affine open subset Eρ + (t⊕⊕α/=ρ gα) is identified with

V = C⟨[F (1), Eρ], [F
(2), Eρ] + [F

(1), [F (1), Eρ]]⟩.

Now for each i ≥ 1, write F (i) as

F (i) =X(i) + x(i) ⋅E−ρ, X(i) ∈ g−1, x(i) ∈ C.

Note that x(1) = 0 and X(1) = v. Then the coefficient of t3 in the above formula, which is proportional
to the third derivative at t = 0, is

1
6
[F (3), Eρ] +

1
4
([F (1), [F (2), Eρ]] + [F

(2), [F (1), Eρ]]) +
1
6
[F (1), [F (1), [F (1), Eρ]]]

=
1
6
[X(3), Eρ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈g1

+
1
6
(−x(3))Hρ +

1
4
([v, [X(2), Eρ]] + [X

(2), [v, Eρ]])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈g0

+
1
4

x(2)[Hρ, v] +
1
4

x(2)[E−ρ, [v, Eρ]] +
1
6
[v, [v, [v, Eρ]]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈g−1

.
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Since it is contained in the vector space V , spanned by [v, Eρ] and −x(2)Hρ + [X
(2), Eρ] + [v, [v, Eρ]],

the g−1-component is zero:

1
4

x(2)[Hρ, v] +
1
4

x(2)[E−ρ, [v, Eρ]] +
1
6
[v, [v, [v, Eρ]]] = 0.

By the Jacobi identity,

[E−ρ, [v, Eρ]] = [v, [E−ρ, Eρ]]

= [Hρ, v]

= −
⟨ρ, ρ⟩

2
⋅ v, (∵ Equation (3.1))

hence
[v, [v, [v, Eρ]]] =

3
2
⟨ρ, ρ⟩x(2) ⋅ v.

In particular,
[v, [v, [v, [v, Eρ]]]] = 0.

So the coefficient of t4 in the above formula is

1
24
[X(4), Eρ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈g1

+
1
24
(−x(4))Hρ +

1
12
[v, [X(3), Eρ]] +

1
8
[X(2), [X(2), Eρ]] +

1
12
[X(3), [v, Eρ]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈g0

+
1
12

x(3)[Hρ, v] +
1
8

x(2)([X(2), [E−ρ, Eρ]] + [E−ρ, [X(2), Eρ]]) +
1
12

x(3)[E−ρ, [v, Eρ]]

+
1
12
([v, [v, [X(2), Eρ]]] + [v, [X(2), [v, Eρ]]] + [X

(2), [v, [v, Eρ]]])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈g−1

+
1
8
(x(2))2(−⟨ρ, ρ⟩)E−ρ +

1
12

x(2) ([v, [v, [E−ρ, Eρ]]] + [v, [E−ρ, [v, Eρ]]] + [E−ρ, [v, [v, Eρ]]])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈g−2(=g−ρ)

.

It is also a linear combination of [v, Eρ] and −x(2)Hρ+[X
(2), Eρ]+[v, [v, Eρ]], hence the g−ρ-component

is zero:

1
8
(x(2))2(−⟨ρ, ρ⟩)E−ρ +

1
12

x(2) ([v, [v, [E−ρ, Eρ]]] + [v, [E−ρ, [v, Eρ]]] + [E−ρ, [v, [v, Eρ]]]) = 0.

By the Jacobi identity,

[E−ρ, [v, [v, Eρ]]] = [v, [E−ρ, [v, Eρ]]]

= [v, [v, [E−ρ, Eρ]]]

= 0, (∵ Equation (3.1)).

Therefore x(2) = 0, which means that

[v, [v, [v, Eρ]]] =
3
2
⟨ρ, ρ⟩x(2) ⋅ v = 0.

Corollary 3.4.2. If g /= Cr, r ≥ 2, then there is no smooth conic in a general direction of D.
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Proof. By Proposition 3.4.1, it is enough to show that there is nonzero v ∈ g−1 such that [v, [v, [v, Eρ]]] /=

0. Since g is not of type C, there is a long root α satisfying ⟨α ∣ρ⟩ = ⟨ρ ∣α⟩ = −1 (for example, elements
of N(ρ) times −1). Then ρ + α ∈ R but ρ + 2α /∈ R and ρ + 2(−α − ρ) /∈ R. Also, α + ρ is a long root.
Moreover, by our choice of root vectors,

(Nα, ρ)
2
= (N−α−ρ, ρ)

2
=

1
2
⟨ρ, ρ⟩.

Now a straightforward computation shows that Eα +E−α−ρ does not satisfy the equation.

Remark 3.4.3. Proposition 3.4.1 can be used to show that every smooth conic in the G2-adjoint variety
ZG2 is a twistor conic. Indeed, if g = G2, then one can prove that for v ∈ g−1,

[v, [v, [v, Eρ]]] = 0 if and only if [v, [v, Eρ]] = 0.

It means that every contact conic is planar. However, ZG2 does not contain a plane ([23, Section 4.3]),
hence a smooth conic on ZG2 cannot be tangent to D. This fact is recovered in Theorem 5.2.4, as a
corollary of our main theorem (Theorem 3.2.2).

3.5 Classification of Borel Fixed Conics

In this section, we study B-fixed points of the compactifications Hg, Cg and CoCg, which can be
regarded as points corresponding to the most singular conics. Namely, we compute the isotropy groups
of the closed orbits of Hg, Cg and CoCg.

Recall that if g = Cr (r ≥ 2), then Rα̌g
(Zg) is compact, and it contains a unique closed orbit

IG(2, C2r) (Subsection 3.1.1). In other words, the space of conics contains a unique B-fixed point
represented by a contact conic whose stabilizer is Pα2 .

Thus we mainly consider the case where g is not of type C. Recall that if g is of type A, then
the three compactifications are all isomorphic to each other (Subsection 3.1.2), and so it is enough to
consider one of them.

Lemma 3.5.1. If g = Ar (r ≥ 2), then Hg contains a unique B-fixed point, represented by a reducible
conic

P(Eρ, Eρ−α1) ∪ P(Eρ, Eρ−αr).

Moreover, its stabilizer is Pα1, α2, αr−1, αr .

Proof. For simplicity, put Li ∶= P(Eρ, Eρ−αi) for i = 1, r. Then the reducible conic L1 ∪Lr has stabilizer
Pα1, α2, αr−1, αr (see Subsection 2.2.2), and in particular it is a B-stable conic.

To show the uniqueness, let C be a B-stable conic on Zg such that [C] ∈ Hg. As we have seen in
Subsection 3.1.2, C cannot be a double line. If C is a reducible conic, then each of its components is
B-stable. However, by Theorem 2.2.7, there only two B-stable lines on Zg, hence C = L1 ∪ Lr. If C

is smooth, then it contains o = [Eρ] (as o is a unique B-fixed point of Zg and by the Borel fixed point
theorem), and its projective tangent line at o is also B-stable. That is, Li is tangent to C at o for some
i = 1, r. This shows that for the plane P spanned by C, P ∩ Zg contains C ∪ Li. Since Zg is defined
by quadrics in P(g), we see that P ⊂ Zg. This is a contradiction, otherwise double lines on P represent
points in Hg.

Lemma 3.5.2. Suppose that g is not of type A or C, and let αj0 be the unique element of N(ρ).
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1. The line LB ∶= P(Eρ, Eρ−αj0
) is a unique B-stable line in P(g).

2. Any B-stable plane in P(g) contains the B-stable line LB, and is of form

P(Eρ, Eρ−αj0
, Eρ−αj0−β)

where β ∈ S is a neighbor of αj0 in the Dynkin diagram of g.

3. In P(g), there is no B-stable conic which is smooth or reducible.

Proof. If L ⊂ P(g) is a B-stable line, then L contains o = [Eρ] which is the unique B-fixed point in P(g).
Thus L = P(Eρ, v) for some v ∈ g. Moreover, since αj0 is the unique simple root which is not orthogonal
to ρ, ρ − αj0 is the maximum in R ∖ {ρ}. By b-stability of L, we have L = P(Eρ, Eρ−αj0

).
If P is a B-stable plane in P(g), then B acts on the space of lines on P, which is compact. Thus by

the uniqueness of LB , P contains LB and P = P(Eρ, Eρ−αj0
, v) for some v ∈ g. By b-stability, we may

choose v as a root vector corresponding to a maximal element in R ∖ {ρ, ρ − αj0}, which is exactly of
form ρ −αj0 − β for some neighbor β of αj0 in the Dynkin diagram. (In fact, ρ − 2αj0 is not a root since
αj0 is long hence ⟨αj0 ∣ρ⟩ = ⟨ρ ∣αj0⟩ = 1.)

For the last statement, consider two different lines L1 and L2 such that their union L1 ∪ L2 is B-
stable. Since B is irreducible, each Li should be B-stable, hence L1 = L2 = LB , a contradiction. Now
assume that there is a B-stable smooth conic C in P(g). Then the plane spanned by C is also B-stable,
hence there is some neighbor β ∈ S of αj0 such that the plane P ∶= P(Eρ, Eρ−αj0

, Eρ−αj0−β) contains
C. Moreover, o ∈ C and the line LB is tangent to C at o. Therefore in P, C is defined by a quadratic
equation

a11x2
1 + a22x2

2 + x0x2 + a12x1x2 = 0

for some aij ∈ C where the homogeneous coordinate on P is chosen so that [x0 ∶ x1 ∶ x2] = [x0Eρ +

x1Eρ−αj0
+x2Eρ−αj0−β]. Then the above equation should be B-stable up to scalar multiplication, however

a simple computation shows that for each H ∈ t, exp(−H) sends the equation to

0 = a11 (x1e(ρ−αj0)(H))
2
+ a22 (x2e(ρ−αj0−β)(H))

2

+ (x0eρ(H)) (x2e(ρ−αj0−β)(H)) + a12 (x1e(ρ−αj0)(H)) (x2e(ρ−αj0−β)(H)) .

This implies that a11 = a22 = a12 = 0, which is impossible.

It is not difficult to compute all B-stable planes in P(g) and their stabilizers in G using Lemma 3.5.2.
For example, given a B-stable plane P = P(Eρ, Eρ−αj0

, Eρ−αj0−β), it can be shown that its stabilizer is
a parabolic subgroup PI where I ⊂ S is

(N(αj0) ∪N(β)) ∖ {αj0 , β} if β is long,

and
(N(αj0) ∪N(β)) ∖ {αj0} if β is short.

(Alternatively, I is a set of γ ∈ S such that ρ − αj0 − γ ∈ R ∖ {ρ − αj0 − β}, or ρ − αj0 − β − γ ∈ R.) These
are listed in Table 3.5. We also indicate whether a plane is contained in Zg or not, by the following
observation: A B-stable plane P(Eρ, Eρ−αj0

, Eρ−αj0−β) is contained in Zg if and only if β is a long root.
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g B-stable plane P StabG(P)

Br (r ≥ 4)
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα3

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α4

B3
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα3

P(Eρ, Eρ−α2 , Eρ−α2−α3) (/⊂ Zg) Pα1, α3

Dr (r ≥ 6)
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα3

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α4

D5
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα3

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α4, α5

D4

P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα3, α4

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α4

P(Eρ, Eρ−α2 , Eρ−α2−α4) Pα1, α3

E6 P(Eρ, Eρ−α6 , Eρ−α3−α6) Pα2, α4

E7 P(Eρ, Eρ−α6 , Eρ−α5−α6) Pα4

E8 P(Eρ, Eρ−α1 , Eρ−α1−α2) Pα3

F4 P(Eρ, Eρ−α4 , Eρ−α3−α4) Pα2

G2 P(Eρ, Eρ−α2 , Eρ−α1−α2) (/⊂ Zg) Pα1

Table 3.5: B-stable planes in P(g) and their stabilizers.

This is because, since

∣ρ − αj0 − β∣2

∣β∣2
=
∣ρ∣2 + ∣αj0 ∣

2 + ∣β∣2 − 2⟨ρ, αj0⟩ − 2⟨ρ, β⟩ + 2⟨αj0 , β⟩

∣β∣2

=
∣αj0 ∣

2

∣β∣2
+ 1 + ⟨αj0 ∣β⟩ (∵⟨αj0 ∣ρ⟩ = 1, ⟨ρ, β⟩ = 0)

= 1 (∵[32, Problem 8, §4.2]),

β is short if and only if ρ−αj0 −β is short, which is equivalent to saying that [Eρ−αj0−β] /∈ Zg. Then the
observation follows, since if P(Eρ, Eρ−αj0

, Eρ−αj0−β) /⊂ Zg, then their intersection is a B-stable double
line supported on LB by Lemma 3.5.2.

Remark 3.5.3. The stabilizers of B-stable planes contained in Zg are also given in [23, Theorem 4.9].
On the other hand, comparing Table 3.5 and Theorem 2.2.7, we see that the stabilizers of B-stable planes
not in Zg are equal to StabG(LB).

Corollary 3.5.4. Suppose that P is a plane on Zg. Then the restriction map StabG(P) → Aut(P) is
surjective.

As a consequence, the G-conjugacy class of a planar conic is only depending on the G-conjugacy
class of the plane spanned by it and its scheme structure. More precisely, if Ci is a planar conic on a
plane Pi ⊂ Zg for i = 1, 2, then C1 and C2 are G-conjugate to each other if and only if P1 and P2 are
G-conjugate planes and C1 are C2 isomorphic as schemes.

Proof of Corollary 3.5.4. Recall that if g is of type C, then Zg = ν2(P2n+1), hence there is no plane on
Zg. If g = Ar, r ≥ 2 and P is a plane on Zg, then conics on P are either (2, 0)- or (0, 2)-conics, since
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a double line cannot be a (1, 1)-conic (see Subsection 3.1.2). Thus in the notation of Subsection 3.1.2,
P is contracted by Zg → P(V1) or by Zg → P(Vr), and so the statement follows from the discussion in
Subsection 3.1.2.

Now we may assume that g is not of type A or C. Since the space of linear subspaces in Zg is
the disjoint union of rational homogeneous spaces ([23, Theorem 4.9]), we may assume that P is B-
stable. Then by Lemma 3.5.2, we can write P = P(Eρ, Eρ−αj0

, Eρ−αj0−β). Observe that the Lie algebra
of StabG(P) contains g−αj0

+ g−β + g−αj0−β by Table 3.5. Moreover, with respect to the homogeneous
coordinate [x ∶ y ∶ z] = [xEρ + yEρ−αj0

+ zEρ−αj0−β] on P, exp(g−αj0
+ g−β + g−αj0−β) (respectively,

exp(gαj0
+ gβ + gαj0+β)) generates all lower (respectively, upper) triangular matrices of which diagonal

elements are 1 in Aut(P) ≃ PGL3. Since the maximal torus T is sent to the group of diagonal matrices,
it follows that StabG(P) → Aut(P) is surjective.

Corollary 3.5.5. Assume that g is not of type A or C.

1. Cg has a unique closed G-orbit ≃ G/StabG(LB) which is the locus of double lines.

2. For a closed G-orbit O ⊂Hg, let PO(⊂ P(g)) be the plane spanned by a B-fixed point in O. Then
the assignment O ↦ PO is a bijective map from the set of closed G-orbits in Hg to the set of
B-stable planes on P(g). Under this map, the closed orbit sent to a B-stable plane P ⊂ P(g) is
isomorphic to G/StabG(LB) ∩ StabG(P).

3. For a closed G-orbit O ⊂ CoCg, let x ∈ O be a B-fixed point and PO the plane spanned by the
conic CH(x)(∈ Hg). Then the assignment O ↦ PO defines a bijective map from the closed G-
orbits in CoCg to the B-stable planes in P(g). Furthermore, if PO = P(Eρ, Eρ−αj0

, Eρ−αj0−β) and
Aut(PO) is identified with PGL3 with respect to the ordered basis {Eρ, Eρ−αj0

, Eρ−αj0−β}, then
StabG(x) is the preimage of the subgroup of upper triangular matrices under the restriction map
StabG(PO) → Aut(PO) ≃ PGL3.

Proof. 1. Since closed orbits in Cg and Hg are projective, by Lemma 3.5.2, closed orbits must consist
of double lines. Thus the first statement follows from Theorem 2.2.7.

2. For each closed orbit O in Hg, consider its unique B-fixed point. This point is represented by a
double line, say LO, in Zg such that (LO)red = LB by Lemma 3.5.2. Now define PO to be the unique
plane in P(g) which contains LO as a closed subscheme. Then the map O ↦ PO is injective. Since
the stabilizer of LO is equal to StabG(LB)∩StabG(PO), we see thatO ≃ G/StabG(LB)∩StabG(PO).

For bijectivity, observe that the injective map O ↦ PO is surjective if there is only one B-stable
plane in P(g), which is the case when g is of an exceptional type. On the other hand, if every
B-stable plane in P(g) is contained in Zg, i.e. when g /= B3, G2, then every B-stable double line in
P(g) represents a point in Hg, hence the map O ↦ PO is surjective.

Thus it suffices to show the surjectivity when g = B3. Let us index simple roots of G2 and B3 so
that their Dynkin diagrams are given by

α2α1
for G2, and

β1 β2 β3
for B3.

For roots α ∈ RG2 and β ∈ RB3 , we denote by (G2)α and (B3)β the corresponding root spaces.
Root vectors are denoted by Eα ∈ (G2)α and Eβ ∈ (B3)β as before. Then there is an embedding
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G2 ↪ B3 as a Lie subalgebra so that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(G2)α1 ;
(G2)α2 ;
(G2)α1+α2 ;
(G2)2α1+α2 ;
(G2)3α1+α2 ;
(G2)3α1+2α2

are generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eβ1 + c10Eβ3 ;
Eβ2 ;
Eβ1+β2 + c12 ⋅Eβ2+β3 ;
Eβ2+2β3 + c21 ⋅Eβ1+β2+β3 ;
Eβ1+β2+2β3 ;
Eβ1+2β2+2β3 ,

respectively,

for some nonzero constants cij ∈ C×. See for example [26, p. 84].

Now consider the induced embedding between adjoint varieties ZG2 ↪ ZB3 . Since the ideal of
Zg ⊂ P(g) is generated by a system of quadrics, by Corollary 3.5.5 and Table 3.5, the scheme-
theoretic intersection of ZG2 and the plane

P ∶= P(E3α1+2α2 , E3α1+α2 , E2α1+α2) in P(G2)

= P(Eβ1+2β2+2β3 , Eβ1+β2+2β3 , Eβ2+2β3 + c21 ⋅Eβ1+β2+β3) in P(B3)

is a double line which represents a point in HG2 , hence a point [ZG2 ∩schP] in HB3 . Furthermore,
the T -orbit closure of [ZG2 ∩schP] contains two boundary points, which are conics spanning planes

P1 ∶= P(Eβ1+2β2+2β3 , Eβ1+β2+2β3 , Eβ2+2β3), and P2 ∶= P(Eβ1+2β2+2β3 , Eβ1+β2+2β3 , Eβ1+β2+β3),

respectively. These are the B-stable planes for g = B3 in Table 3.5. Since P2 /⊂ ZB3 , the only
conic on P2 which represents a point in HB3 is the set-theoretic intersection P2 ∩sch ZB3 . It is a
B-stable double line, hence P2 = PG⋅[P2∩schZB3 ]. On the other hand, since P1 ⊂ ZB3 , P1 is the plane
corresponding to the orbit of the B-stable double line on it.

3. Recall that the space of complete conics on P2 contains a unique closed PGL3-orbit, and its
isotropy group is a Borel subgroup of PGL3. Then it suffices to observe that the subgroup of
upper triangular matrices is contained in the image of the restriction map StabG(PO) → PGL3. In
fact, this observation implies that the assignment O ↦ PO is injective, and its surjectivity follows
from the second statement.

Using Corollary 3.5.5, one can easily compute the isotropy groups of closed orbits. In the case of Cg,
the isotropy group of the closed orbit is PN(αj0) by Theorem 2.2.7. For Hg and CoCg, we summarize
the result in Table 3.6. Here, O means a closed G-orbit either in Hg or in CoCg, and PO denotes the
B-stable plane corresponding to O in the sense of Corollary 3.5.5. In the third and fourth columns, the
isotropy groups of O containing B are given.
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g B-stable plane PO Isotropy group of O ⊂Hg Isotropy group of O ⊂CoCg

Br (r ≥ 4)
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα1, α3 Pα1, α2, α3

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α3, α4 Pα1, α2, α3, α4

B3
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα1, α3 Pα1, α2, α3(= B)

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α3 Pα1, α2, α3(= B)

Dr (r ≥ 6)
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα1, α3 Pα1, α2, α3

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α3, α4 Pα1, α2, α3, α4

D5
P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα1, α3 Pα1, α2, α3

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α3, α4, α5 Pα1, α2, α3, α4, α5(= B)

D4

P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα1, α3, α4 Pα1, α2, α3, α4(= B)

P(Eρ, Eρ−α2 , Eρ−α2−α3) Pα1, α3, α4 Pα1, α2, α3, α4(= B)

P(Eρ, Eρ−α2 , Eρ−α2−α4) Pα1, α3, α4 Pα1, α2, α3, α4(= B)

E6 P(Eρ, Eρ−α6 , Eρ−α3−α6) Pα2, α3, α4 Pα2, α3, α4, α6

E7 P(Eρ, Eρ−α6 , Eρ−α5−α6) Pα4, α5 Pα4, α5, α6

E8 P(Eρ, Eρ−α1 , Eρ−α1−α2) Pα2, α3 Pα1, α2, α3

F4 P(Eρ, Eρ−α4 , Eρ−α3−α4) Pα2, α3 Pα2, α3, α4

G2 P(Eρ, Eρ−α2 , Eρ−α1−α2) Pα1 Pα1, α2(= B)

Table 3.6: Isotropy groups of the closed G-orbits O in Hg and in CoCg.
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Chapter 4. Colored Fans of Spaces of Conics

This whole chapter is devoted to the proof of our main theorem: Theorem 3.2.2. For the proof,
we use the results of the previous Chapter 3, especially on the open orbits and the closed orbits of the
compactifications Hg, Cg and CoCg, to compute the colored fans of their normalizations.

To do this, recall the notation given in Section 3.2. Namely, we consider a maximally σ-split torus
T ′ = g ⋅T ⋅g−1 and a Borel subgroup B′ = g ⋅B ⋅g−1 such that for a positive root α with respect to B′ such
that α ∶= α∣T ′1 /= 0, then σ(α) < 0. Also recall the expression of the generators γj of the Weyl chamber
−V in terms of the restricted simple coroots (S′Og

)∨ = {λ∨1 , . . . , λ∨m}:

• If g = Ar (r ≥ 4), then R′Og
= BC2 and

γ1 = λ∨1 + λ∨2 ,

γ2 = λ∨1 + 2λ∨2

where λ∨1(= λV
1 ) and λ∨2(= λV

2 /2) are basis elements of (R′Og
)∨ (see Remark 2.3.12).

• If g = A3, then R′Og
= C2 and

γ1 = λ∨1 + λ∨2 ,

γ2 =
1
2

λ∨1 + λ∨2 .

• If g = A2 or Cr (r ≥ 2), then R′Og
= BC1, and γ = γ1 = λ∨ where λ∨(= λV /2) means the basis

element of (R′Og
)∨ (hence ⟨λ, λ∨⟩ = 1; see Remark 2.3.12).

• If g = Br≥4 or Dr≥5, then R′Og
= B4 and

γ1 ∶= λ∨1 + λ∨2 + λ∨3 +
1
2

λ∨4 ,

γ2 ∶= λ∨1 + 2λ∨2 + 2λ∨3 + λ∨4 ,

γ3 ∶= λ∨1 + 2λ∨2 + 3λ∨3 +
3
2

λ∨4 ,

γ4 ∶= λ∨1 + 2λ∨2 + 3λ∨3 + 2λ∨4 .

• If g = B3, then R′Og
= B3 and

γ1 ∶= λ∨1 + λ∨2 +
1
2

λ∨3 ,

γ2 ∶= λ∨1 + 2λ∨2 + λ∨3 ,

γ3 ∶= λ∨1 + 2λ∨2 +
3
2

λ∨3 .

• If g =D4, then R′Og
=D4 and

γ1 ∶= λ∨1 + λ∨2 +
1
2

λ∨3 +
1
2

λ∨4 ,

γ2 ∶= λ∨1 + 2λ∨2 + λ∨3 + λ∨4 ,

γ3 ∶=
1
2

λ∨1 + λ∨2 + λ∨3 +
1
2

λ∨4 ,

γ4 ∶=
1
2

λ∨1 + λ∨2 +
1
2

λ∨3 + λ∨4 .
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• If g is of an exceptional type other than G2, then R′Og
= F4 and

γ1 ∶= 2λ∨1 + 3λ∨2 + 4λ∨3 + 2λ∨4 ,

γ2 ∶= 3λ∨1 + 6λ∨2 + 8λ∨3 + 4λ∨4 ,

γ3 ∶= 2λ∨1 + 4λ∨2 + 6λ∨3 + 3λ∨4 ,

γ4 ∶= λ∨1 + 2λ∨2 + 3λ∨3 + 2λ∨4 .

• If g = G2, then R′Og
= G2 and

γ1 ∶= 2λ∨1 + 3λ∨2 , γ2 ∶= λ∨1 + 2λ∨2 .

4.1 Colored Cones of Simple Embeddings

Consider a G-variety X with an open spherical G-orbit and let Y ⊂ X be a closed G-orbit which is
projective. If X admits a G-linearized ample line bundle, then by Proposition 2.3.7, for the normalization
π ∶ Xnor → X, π−1(Y ) is a closed G-orbit in Xnor. Moreover, since Y is simply connected and the
restriction π ∶ π−1(Y ) → Y is a G-equivariant finite morphism, we have π−1(Y ) ≃ Y .

Now assume that the open orbit of X is isomorphic to Og, and put

XY ∶= {x ∈Xnor
∶ G ⋅ x ⊃ π−1

(Y )}.

Then XY is open in Xnor, and in fact XY is a simple Og-embedding with a unique closed orbit π−1(Y ) ≃

Y . In the notation of Section 3.2, for a B′-color D ∈ D(Og), since StabG(D) is a parabolic subgroup
containing B′, we can write

StabG(D) = P ′I′(D), I ′(D) ⊂ S′.

If I(D) ∶= I ′(D) ○Adg and w0 is a representative of the longest element in WG with respect to B, then
since P ′I′(D) = g ⋅ PI(D) ⋅ g

−1, Lemma 2.3.6 implies that

(the isotropy group of Y containing B) = ⋂
D∈D(Og)∖F(XY )

(w0 ⋅ PI(D) ⋅w
−1
0 )
−. (4.1)

Remark 4.1.1. 1. I ′(D) is explicitly given in Remark 2.3.12 when g = Ar, r ≥ 2. In other cases, by
Theorem 2.3.11 and the discussion in Section 3.2, the color map ϵ ∶ D(Og) →

1
2(S

′
g)
∨ is bijective

and
I ′(Di) = {α

′
j ∈ S′ ∶ α′j = λi}

where Di is the color ϵ−1(λ∨i /2).

2. The action of w0 on the set of roots is well-known. See [6, PLATE I–IX]. Indeed, under Adw0 ,
αj ∈ S is sent to −τ(αj) where τ ∶ S → S is a map given by the following diagram involutions:

• If g = A2r (r ≥ 1):
1 r − 1 r 2r

• If g = A2r+1 (r ≥ 1):
1 r 2r + 1

• If g =D2r+1 (r ≥ 2):
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• If g = E6:
1

6

2 3 4 5

• Otherwise, τ = id.

Since our compactifications are equipped with G-equivariant finite morphisms

Cg ↪ Chow1, 2(P(g), OP(g)(1))

→ {hypersurfaces of degree (2, 2) in P(g∗) × P(g∗)}

↪ P ((Sym2g)⊗2) ,

Hg → Hilb2m+1(P(g), OP(g)(1))

↪ Gr (SymN
(g∗), M)

⊂ P(
M

⋀SymN
(g∗))

for some positive integers M and N (see [20, Chapter I]), Cg and Hg are equipped with G-linearized
ample line bundles. Since CoCg ⊂ CoC(P(g)), CoCg also admits a G-linearized ample line bundle.
Thus the previous discussion can be applied, and in particular, by Proposition 2.3.7, we may identify
orbits in Cg (respectively, in Hg and in CoCg) with orbits in its normalization.

Now the colored cone of Xnor can be easily computed in the following cases:

1. The case where the color map ϵ ∶ D(Og) →
1
2(S

′
g)
∨ is injective and X is simple. This assumption

is satisfied in the following cases:

(a) The case where g is not of type A or C, and X =Cg. Indeed, ϵ is injective by Theorem 2.3.11
and Theorem 3.2.1, and Cnor

g is simple by Corollary 3.5.5. For example, if g = Br with r ≥ 3,
then we have

StabG(LB) = Pα1, α3 , Ii = {αi}, Adw0 = −id

by Theorem 2.2.7, Table 3.1 and [6, Plate II]. It means that (w0 ⋅PIi ⋅w
−1
0 )
− = Pαi for each i,

hence

F(Cnor
(ZBr)) =

⎧⎪⎪
⎨
⎪⎪⎩

{D2, D4} (if r ≥ 4),
{D2} (if r = 3)

After similar computations using the following list of the isotropy groups and (w0 ⋅PIi ⋅w
−1
0 )
−,

we obtain Table 3.2.

• g =Dr with r ≥ 6:

StabG(LB) = Pα1, α3 , (w0 ⋅ PIi ⋅w
−1
0 )
−
= Pαi , ∀i = 1, 2, 3, 4.

• g =D5:

StabG(LB) = Pα1, α3 , (w0 ⋅ PIi ⋅w
−1
0 )
−
=

⎧⎪⎪
⎨
⎪⎪⎩

Pαi , if i = 1, 2, 3;
Pα4, α5 , if i = 4.

• g =D4:
StabG(LB) = Pα1, α3, α4 , (w0 ⋅ PIi ⋅w

−1
0 )
−
= Pαi , ∀i = 1, 2, 3, 4.
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• g = E6:
StabG(LB) = Pα3 ,

(w0 ⋅ PI1 ⋅w
−1
0 )
−
= Pα1, α5 , (w0 ⋅ PI2 ⋅w

−1
0 )
−
= Pα2, α4 ,

(w0 ⋅ PI3 ⋅w
−1
0 )
−
= Pα3 , (w0 ⋅ PI4 ⋅w

−1
0 )
−
= Pα6 .

• g = E7:
StabG(LB) = Pα5 ,

(w0 ⋅ PI1 ⋅w
−1
0 )
−
= Pα2 , (w0 ⋅ PI2 ⋅w

−1
0 )
−
= Pα4 ,

(w0 ⋅ PI3 ⋅w
−1
0 )
−
= Pα5 , (w0 ⋅ PI4 ⋅w

−1
0 )
−
= Pα6 .

• g = E8:
StabG(LB) = Pα2 ,

(w0 ⋅ PI1 ⋅w
−1
0 )
−
= Pα7 , (w0 ⋅ PI2 ⋅w

−1
0 )
−
= Pα3 ,

(w0 ⋅ PI3 ⋅w
−1
0 )
−
= Pα2 , (w0 ⋅ PI4 ⋅w

−1
0 )
−
= Pα1 .

• g = F4:
StabG(LB) = Pα3 ,

(w0 ⋅ PIi ⋅w
−1
0 )
−
= Pαi , ∀i = 1, . . . , 4.

• g = G2:
StabG(LB) = Pα1 ,

(w0 ⋅ PIi ⋅w
−1
0 )
−
= Pαi , ∀i = 1, 2.

(b) The case where g is of exceptional type and X is either Hg and CoCg. In this case, ϵ is
injective by Theorem 3.2.1 and Theorem 2.3.11, and X is simple by Corollary 3.5.5. As
before, using Table 3.6 and the above list of (w0 ⋅ PIi ⋅ w

−1
0 )
−, we obtain Tables 3.3–3.4 for

exceptional Lie algebras.

2. The case where g = Ar for r ≥ 4 and X = CAr . Recall that in this case, Cnor
Ar
≃Hnor

Ar
≃ CoCnor

Ar
by

the discussion of Subsection 3.1.2. Furthermore, Cnor
Ar

is a simple OAr -embedding with a unique
closed orbit G/Pα1, α2, αr−1, αr by Lemma 3.5.1. By the equation 4.1 and Remark 2.3.12, we have

F(Cnor
Ar
) = ∅,

hence
C(Cnor

Ar
) = V = Q≥0⟨−γ1, −γ2⟩

since Cnor
Ar

is projective.

Together with Remark 3.3.6, Theorem 3.2.2 follows, except when g is A3 or of type B or D. These
are covered in the rest of this chapter.
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4.2 The Case of Orthogonal Lie Algebras

In this section, we compute the colored data of Hnor
g and CoCnor

g for g of type B or D, using the
colored cone of Cnor

g . First, let us prove the following lemma.

Lemma 4.2.1. Assume that g is not of type A or C. In Cnor
g , each G-orbit represented by planar

reducible conics corresponds to a colored face of codimension 1 in the colored cone of Cnor
g .

Proof. Let O ⊂ Cg be an orbit represented by planar reducible conics, and P a plane contained in Zg

such that reducible conics in P represent points in O. Recall that O is not a closed orbit, since g is
not of type A or C (Corollary 3.5.5). Since non-planarity and smoothness are open conditions, every
boundary point of O should be represented by a planar reducible conic or a double line. If a planar
reducible conic C represents a boundary point of O, then the plane spanned by C is in the closure of
the G-orbit containing P in the space of planes in Zg. However since the space of planes in Zg is the
disjoint union of rational homogeneous spaces by [23, Theorem 4.9], the plane spanned by C is indeed
G-conjugate to P, which is a contradiction to Corollary 3.5.4. Therefore the boundary of O consists of
double lines, and the same statement holds for π−1(O), which is a G-orbit by Proposition 2.3.7, where
π ∶ Cnor

g → Cg is the normalization map. Since double lines form the unique closed orbit in Cg, the
desired statement follows.

As shown in Corollary 3.5.5 and Table 3.6, Hnor
g and CoCnor

g contain at least two closed G-orbits
when g is of type B or D. For a closed G-orbit Y of Hnor

g (of CoCnor
g , respectively), define

HY ∶= {x ∈Hnor
g ∶ Y ⊂ G ⋅ x}, (CoCY ∶= {x ∈CoCnor

g ∶ Y ⊂ G ⋅ x}, respectively).

As remarked in Section 2.3, it is a simple Og embedding with its unique closed orbit Y , and the colored
cones of HY (of CoCY , respectively) for all closed orbits Y are exactly the maximal elements of the
colored fan of Hnor

g (of CoCnor
g , respectively).

4.2.1 High Rank Cases

Now assume that g = Br (r ≥ 4) or Dr (r ≥ 5) so that the restrictive root system is R′Og
= B4

(Theorem 3.2.1). By Corollary 3.5.5 and Table 3.6, Hnor
g has exactly two closed orbits and they are

represented by planar double lines. Thus the colored fan of Hnor
g consists of two maximal colored cones

and their colored faces by Lemma 2.3.4. For i = 1, 2, let Yi be the closed orbit in Hnor
g represented by

double lines on the ith plane Pi in Table 3.5 (in the row g). By Table 3.6 and the equation (4.1) in
Section 4.1, we have

F(HY1) = {D2, D4}, F(HY2) = {D2}.

Let Oi ⊂ Cnor
g be the G-orbit containing planar reducible conics in the ith plane in Table 3.5 for

i = 1, 2. By Lemma 4.2.1, each Oi corresponds to a colored face of dimension 3, and such a face contains
extremal rays generated by −γ2 and −γ4 by the list of colored faces in Section 3.2. Note that if a 1-
dimensional colored face Q≥0 ⋅ (−γ) of Cnor

g is contained in the colored face corresponding to Oi for some
i, then the G-stable divisor corresponding to Q≥0 ⋅ (−γ) contains Oi in Cnor

g . Since Oi is contained in
the open subset where the morphism FCnor ∶ Hnor

g → Cnor
g is an isomorphism, and Yi is contained in

the closure of its preimage under FCnor, the strict transform of the divisor corresponding to Q≥0 ⋅ (−γ)
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contains Yi. In other words, the colored cone of HYi contains Q≥0 ⋅ (−γ) as an extremal ray. Therefore
the colored cone of HY1 contains

C1 ∶= Q≥0⟨−γ2, −γ4, λ∨2 , λ∨4⟩ (∋ −γ3 = −γ4 + λ∨4/2)

and the colored cone of HY2 contains Q≥0⟨−γ2, −γ4, λ∨2⟩. If −γ1 is contained in the colored cone of HY1 ,
then it contains the valuation cone V, which is a contradiction since HY1 is not complete. Hence the
colored cone of HY2 contains

C2 ∶= Q≥0⟨−γ1, −γ2, −γ4, λ∨2⟩.

By the definition of a colored fan, especially 1(a) and 4(b) in Definition 2.3.2, (C1, {D2, D4}) and
(C2, {D2}) are colored cones of HY1 and HY2 , respectively.

Similarly, by Corollary 3.5.5, CoCnor
g contains two closed orbits, say Ỹi, such that CHnor(Ỹi) = Yi

for i = 1, 2. As before, the equation 4.1 and Table 3.6 imply that

F(CoCỸ1
) = {D4}, F(CoCỸ2

) = ∅.

Furthermore, since we have a morphism CHnor ∶CoCnor
g →Hnor

g , we have

C(CoCỸi
) ⊂ Ci, i = 1, 2.

Since CoCnor
g is complete, and since

C1 ∩ V = Q≥0⟨−γ2, −γ3, −γ4, −γ1 − γ3⟩, C2 ∩ V = Q≥0⟨−γ1, −γ2, −γ4, −γ1 − γ3⟩,

we see that

Q≥0⟨−γ2, −γ4, −γ1 − γ3, λ∨4⟩ ⊂ C(CoCỸ1
), Q≥0⟨−γ1, −γ2, −γ4, −γ1 − γ3⟩ ⊂ C(CoCỸ2

).

Since the union of the cones Q≥0⟨−γ2, −γ4, −γ1 − γ3, λ∨4⟩ and Q≥0⟨−γ1, −γ2, −γ4, −γ1 − γ3⟩ contains the
valuation cone V = Q≥0⟨−γ1, . . . , −γ4⟩, we conclude that the equalities hold.

4.2.2 The Case of D4

Next, we compute the colored fans when g = D4, i.e. when R′Og
= D4. By Corollary 3.5.5 and

Table 3.6, Hnor
D4

has three closed G-orbits, and each of them consists of planar double lines. For each
i ∈ {1, 3, 4} and the colored face

C
′
i ∶= Q≥0⟨−γj ∶ j ∈ {1, 2, 3, 4} ∖ {i}⟩

of the colored cone of Cnor
D4

, there is a B-stable plane Pi in ZD4 such that planar reducible conics in Pi

belong to the G-orbit in Cnor
D4

corresponding to C′i by Corollary 3.5.4 and Lemma 4.2.1.
For each i, let Yi be the closed orbit in Hnor

D4
containing double lines in Pi. Since all of Yi have same

isotropy group Pα1, α3, α4 , the equation (4.1) in Section 4.1 shows that

F(HY1) = F(HY3) = F(HY4) = {D2}.

As in the previous section, since the strict transform (via FCnor) of the divisor corresponding to each
extremal ray of C′i contains Yi, the colored cone of HYi contains

Ci ∶= Q≥0⟨C
′
i, λ∨2⟩ = Q≥0⟨−γj , λ∨2 ∶ j ∈ {1, 2, 3, 4} ∖ {i}⟩.

48



A straightforward computation using the relation −γ1+2γ2−γ3−γ4 = λ∨2 shows that for ∑4
i=1 ai ⋅(−γi) ∈ V,

αi ∈ Q≥0, we have

4
∑
i=1

ai ⋅ (−γi) ∈

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

C1 if and only if a1 ≤ a3 and a1 ≤ a4;
C3 if and only if a3 ≤ a1 and a3 ≤ a4;
C4 if and only if a4 ≤ a1 and a4 ≤ a3.

By 1(a) and 4(b) in Definition 2.3.2, the colored cone of HYi is (Ci, {D2}) for each i.
Similarly, by Corollary 3.5.5, CoCnor

D4
contains three closed orbits Ỹi such that CHnor(Ỹi) = Yi for

each i = 1, 2, 3. Since the isotropy group of Ỹi is B by Table 3.6, by the equation 4.1, we have

F(CoCỸi
) = ∅, ∀i = 1, 2, 3.

Furthermore, since CHnor ∶CoCnor
D4
→Hnor

D4
sends CoCỸi

to HYi , we have

C(CoCỸi
) ⊂ Ci.

Since CoCnor
D4

is projective, we conclude that

C(CoCỸi
) = Ci ∩ V =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Q≥0⟨−γ2, −γ3, −γ4, −γ1 − γ3 − γ4⟩ (i = 1)
Q≥0⟨−γ1, −γ2, −γ4, −γ1 − γ3 − γ4⟩ (i = 2)
Q≥0⟨−γ1, −γ2, −γ3, −γ1 − γ3 − γ4⟩ (i = 3).

4.2.3 The Case of B3

Finally, consider the case where g = B3. By Corollary 3.5.5, Hnor
B3

contains two closed orbits, say Y1

and Y3. By the equation (4.1) in Section 4.1, the colors of HY1 and HY3 are given by

F(HY1) = F(HY3) = {D2},

since Pα1, α3 is an isotropy group of each of Y1 and Y3 (Table 3.6).
For each i = 1, 3, let Oi be the G-orbit in Cnor

B3
corresponding to the colored face Q≥0⟨−γi, −γ2⟩. If

one of the closed orbits, say Yj , is contained in the closures of the preimages of both O1 and O3 under
FCnor, then the colored cone of HYj contains Q≥0⟨−γ1, −γ2, −γ3, λ∨2⟩, which is a contradiction since HYj

is not complete. Therefore we may assume that for each i = 1, 3, Yi is contained in the closure of the
preimage of Oi. In other words, the colored cone of HYi contains

Ci ∶= Q≥0⟨−γi, −γ2, λ∨2⟩.

By 1(a) and 4(b) in Definition 2.3.2, (C1, {D2}) and (C2, {D2}) are maximal colored cones in the colored
fan of Hnor

B3
.

By Corollary 3.5.5, CoCnor
B3

contains two closed orbits Ỹi, and we have CHnor(Ỹi) = Yi for i = 1, 3.
By Table 3.6, the isotropy groups of Ỹi is B, hence by the equation 4.1,

F(CoCỸ1
) = F(CoCỸ3

) = ∅.

Since CoCnor
B3

is projective, and since CHnor ∶CoCnor
B3
→Hnor

B3
sends CoCỸi

to HYi , we have

C(CoCỸi
) = Ci ∩ V =

⎧⎪⎪
⎨
⎪⎪⎩

Q≥0⟨−γ1, −γ2, −γ1 − γ3⟩ (i = 1)
Q≥0⟨−γ2, −γ3, −γ1 − γ3⟩ (i = 3).

49



4.3 The Case of Special Linear Lie Algebras

In this section, we compute the colored fan in the case g = A3 to complete the proof of Theorem
3.2.2.

Suppose that g = Ar, r ≥ 2. We use the notation of Subsection 3.1.2. Namely, g = sl(V ) for a
vector space V of dimension r + 1, and Zg is equipped with two projections p ∶= p1 ∶ Zg → P(V ) and
q ∶= pr ∶ Zg → P(V ∗). Recall that Hnor

g (≃ Cnor
g ≃ CoCnor

g ) parametrizes (1, 1)-conics. That is, for a
conic C representing a point in Hg, C is a reduced scheme, and p(C) and q(C) are lines on P(V ) and
P(V ∗), respectively. Thus we have a G-equivariant morphism

p × q ∶Hg → Gr(2, V ) ×Gr(2, V ∗), [C] ↦ ([p(C)], [q(C)]).

Observe that Gr(2, V ∗) can be identified with Gr(r−1, V ). Thus under the diagonal G = SL(V )-action,
the orbit structure of Gr(2, V ) ×Gr(2, V ∗) ≃ Gr(2, V ) ×Gr(r − 1, V ) is given as follows:

• If r = 2 (i.e. dim V = 3), then Gr(2, V ) ×Gr(1, V ) consists of the following two orbits:

– An open orbit
{([W2], [W1]) ∈ Gr(2, V ) ×Gr(1, V ) ∶W2 ∩W1 = 0}.

– A unique closed orbit of codimension 1

{([W2], [W1]) ∈ Gr(2, V ) ×Gr(1, V ) ∶W2 ⊃W1}(≃ G/B).

• If r = 3 (i.e. dim V = 4), then Gr(2, V ) ×Gr(2, V ) consists of the following three orbits:

– An open orbit
{([W2], [W

′
2]) ∈ Gr(2, V ) ×Gr(2, V ) ∶W2 ∩W ′

2 = 0}.

– A codimension 1 orbit

{([W2], [W
′
2]) ∈ Gr(2, V ) ×Gr(2, V ) ∶ dim(W2 ∩W ′

2) = 1}.

– A unique closed orbit of codimension 4

diag(Gr(2, V )) ∶= {([W2], [W
′
2]) ∈ Gr(2, V ) ×Gr(2, V ) ∶W2 =W ′

2}(≃ G/Pα2).

• If r ≥ 4 (i.e. dim V ≥ 5), then Gr(2, V ) ×Gr(r − 1, V ) consists of the following three orbits:

– An open orbit

{([W2], [Wr−1]) ∈ Gr(2, V ) ×Gr(r − 1, V ) ∶W2 ∩Wr−1 = 0}.

– A codimension 1 orbit

{([W2], [Wr−1]) ∈ Gr(2, V ) ×Gr(r − 1, V ) ∶ dim(W2 ∩Wr−1) = 1}.

– A unique closed orbit of codimension 4

Fl2, r−1(V ) ∶= {([W2], [Wr−1]) ∈ Gr(2, V ) ×Gr(r − 1, V ) ∶W2 ⊂Wr−1}(≃ G/Pα2, αr−1).

50



In each case, Gr(2, V ) ×Gr(2, V ∗) contains an open G-orbit O and a unique closed G-orbit. We
claim that p × q is bijective over O. That is, for 2-dimensional subspaces W2 ⊂ V and U2 ⊂ V ∗, if
([W2], [U2]) ∈ O, then there is a unique [C] ∈Hg such that p(C) = PW2 and q(C) = PU2. Indeed, since
([W2], [U2]) ∈ O, for every w ∈W2, we have ⟨w, U2⟩ /= 0 where ⟨ , ⟩ ∶ V ×V ∗ → C is the natural pairing. If
{u1, u2} is a basis of U2, then since each ui defines a hyperplane in V , there exist w1, w2 ∈W2 such that
⟨w1, u2⟩ = ⟨w2, u1⟩ = 0. Since ⟨wi, ui⟩ /= 0, we may assume that ⟨wi, uj⟩ = δij . Now in Zg ≃ Fl1, r(V ), we
have

p−1
(PW2) ∩ q−1

(PU2) = {[(a1w1 + a2w2) ⊗ (b1u1 + b2u2)] ∶ ai, bi ∈ C, ⟨a1w1 + a2w2, b1u1 + b2u2⟩ = 0}

= {[(a1w1 + a2w2) ⊗ (b1u1 + b2u2)] ∶ ai, bi ∈ C, a1b1 + a2b2 = 0}

≃ (a1b1 + a2b2 = 0) in P1
a1, a2

× P1
b1, b2

,

which is a smooth conic. Hence the claim follows, and in particular, p× q induces a birational morphism
Hnor

g → Gr(2, V ) ×Gr(2, V ∗).
Now suppose that g = A3 so that dim V = 4 and we have a G-equivariant birational morphism

p × q ∶Hnor
A3
→ Gr(2, V ) ×Gr(2, V ∗) ≃ Gr(2, V ) ×Gr(2, V ).

Recall that Hnor
A3

and Gr(2, V ) ×Gr(2, V ) have unique closed orbits, isomorphic to G/B (Lemma 3.5.1)
and Gr(2, V ) ≃ G/Pα2 , respectively. In particular, p × q is not an isomorphism.

On the other hand, by the equation (4.1) and Remark 2.3.12, the set of colors of Gr(2, V )×Gr(2, V )

is one of
{D1}, {D1, D+2}, {D1, D−2}.

However, since V, λ∨1 and λ∨2 spans a cone which is not strictly convex, the colored cone of Gr(2, V ) ×

Gr(2, V ) must be
(Q≥0⟨−γ1, λ∨1⟩, {D1}).

Similarly, the set of colors of Hnor
A3

is one of

∅, {D
+
2}, {D

−
2}.

By the existence of the morphism p× q, we have F(Hnor
A3
) ⊂ {D1}, which means F(Hnor

A3
) = ∅. Therefore

the colored cone of Hnor
A3

is (V, ∅).
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Chapter 5. Applications

In this chapter, we present several applications of our main Theorems 3.2.1 and 3.2.2.

5.1 Classical Descriptions

In Subsection 3.1.1, we see that the space of conics on Zg for g of type C is isomorphic to the
Grassmannian. In this section, we describe the space of conics in terms of projective geometry, especially
when g is of type A or G2.

5.1.1 Type A: Blow-up of the Product of Grassmannians

Suppose that g = Ar = sl(V ), r ≥ 2. In Section 4.3, we have seen that there is a G-equivariant
birational morphism

p × q ∶Hnor
g → Gr(2, V ) ×Gr(2, V ∗), [C] ↦ ([p(C)], [q(C)]),

and Gr(2, V ) ×Gr(2, V ∗) is a simple Og-embedding with unique closed orbit Fl2, r−1(V ) ≃ G/Pα2, αr−1 .
Moreover, if r = 3, then its colored cone is (Q≥0⟨−γ1, λ∨1⟩, {D1}) by the discussion in Section 4.3. Sim-
ilarly, by the equation 4.1 (Section 4.1) and Remark 2.3.12, one can show that the set of colors of
Gr(2, V ) ×Gr(2, V ∗) is ∅ if r = 2 and {D1} if r ≥ 4. Therefore its colored cone is

(Q≥0⟨−γ⟩, ∅) if r = 2, and (Q≥0⟨−γ1, λ∨1⟩, {D1}) if r ≥ 3.

In particular, if r = 2, then the morphism Hnor
g → Gr(2, V )×Gr(2, V ∗) is an isomorphism. If r ≥ 3, then

the colored cone (V, ∅) defines a unique complete Og-embedding admitting a G-equivariant birational
morphism to Gr(2, V ) × Gr(2, V ∗), which is not an isomorphism. By Theorem 3.2.2, we obtain the
following proposition.

Proposition 5.1.1. Suppose that g = sl(V ) for a vector space V of dimension r + 1 ≥ 3.

1. If r = 2, then Hnor
g is isomorphic to Gr(2, V ) ×Gr(2, V ∗).

2. If r ≥ 3, then Hnor
g is isomorphic to the blow-up of Gr(2, V ) × Gr(2, V ∗) along the partial flag

variety Fl2, r−1(V ).

Remark 5.1.2. If g is of type A, then Hnor
g is smooth by Proposition 5.1.1, and its colored cone is

(V, ∅) by Theorem 3.2.2. It means that Hnor
g is a wonderful variety in the sense of Remark 2.2.10.

5.1.2 Type G2: Cayley Grassmannian

By Theorem 3.2.2 for g = G2, the morphism FCnor ∶ FCnor ∶ Hnor
G2
→ Cnor

G2
is an isomorphism.

In fact, since Og = G/Gσ (Theorem 3.2.1), we see that the colored fan of Hnor
G2

is same with that of
[37, Theorem 4.1.(xi)], which represents an 8-dimensional smooth symmetric variety of Picard number 1,
called the Cayley Grassmannian CG. Here, for the complexifixed Octonion algebra OC and its imaginary
part Im OC, the Cayley Grassmannian CG is defined to be the subset of Gr(3, Im OC) consisting of the
imaginary parts of the 4-dimensional subalgebras of OC. Geometry of CG is investigated in [28], and
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moreover, it has been observed that CG parametrizes conics on ZG2 in [29, p. 1784]. Furthermore, since
the open orbit OG2 in CG admits a wonderful compactification, and since a colored cone of a wonderful
variety is of form (V, ∅), we see that CoCG2 is the wonderful compactification of OG2 by Theorem 3.2.2.

5.2 Conjugacy Classes of Conics

In this section, we describe the G-conjugacy classes of conics in adjoint varieties. Since the G-
conjugacy classes of conics correspond to G-orbits in Hg, we study G-orbits in Hg. First, we count their
number, using Lemma 2.3.4, Proposition 2.3.7 and Theorem 3.2.2.

Corollary 5.2.1. The number of G-orbits in Cg is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if g = Ar with r ≥ 3;
2 if g = A2, Cr with r ≥ 2;
11 if g = Br with r ≥ 4, Dr with r ≥ 5;
7 if g = B3, E6, E7, E8, F4;
15 if g =D4;
3 if g = G2.

The number of G-orbits in Hg is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if g = Ar with r ≥ 3;
2 if g = A2, Cr with r ≥ 2;
15 if g = Br with r ≥ 4, Dr with r ≥ 5;
9 if g = B3, E6, E7, E8, F4;
21 if g =D4;
3 if g = G2.

To figure out which conjugacy class of conics is associated to each colored face, we need to analyze
geometry of singular conics in more detail. The following proposition shows that reducible conics form
a prime divisor in the spaces of conics.

Proposition 5.2.2. Assume that g is not of type C. Then each of Hg and Cg contains a prime divisor
parametrizing all reducible conics and whose general points are represented by non-planar reducible conics.

Proof. It is enough to consider the Hilbert scheme. In the notation of Subsection 2.2.2, define

Ko ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Cα1
o × C

αr
o if g = Ar, r ≥ 2;

(C
αj0
o × C

αj0
o ) ∖ diag(Cαj0

o ) otherwise.

Since g is not of type C, each element of Ko represents a reducible conic, via a morphism

u ∶ Ko →Hg, ([ToL1], [ToL2]) ↦ [L1 ∪ L2]

where Li’s are lines passing through o. Moreover, u is finite onto its image (bijective if g = Ar, and
2-to-1 otherwise), and its image is the locus of reducible conics singular at o. Thus dim u(Ko) = dimKo =

2 ⋅ (n − 1). Since for each g ∈ G, the translation g ⋅ u(Ko) is the locus of reducible conics singular at g ⋅ o,
the locus of reducible conics is given by G ⋅ Ko, which is irreducible and whose dimension is equal to

dimKo + dim Zg = (2n − 2) + (2n + 1) = 4n − 1.
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In particular, it is a prime divisor.
To see that general reducible conics are non-planar, we may assume that g is not of type A (as no

planar conic is parametrized by HAr ; see Subsection 3.1.2). Suppose that ([ToL1], [ToL2]) ∈ Ko and put
[C] ∶= u([ToL1], [ToL2]), i.e. C = L1 ∪L2. Then C is planar if and only if the secant line joining [ToL1]

and [ToL2] is contained in Cαj0
o ⊂ P(ToZg) (cf. [23, Section 4.3]). Therefore if every reducible conic is

planar in Zg, then the secant variety of Cαj0
o coincides with Cαj0

o itself, which is a contradiction (see [16,
Section 6.3]).

Next, we count the conjugacy classes of reducible conics when g is not of type C. If g = Ar, r ≥ 2,
then these are easy to count. In fact, if g = A2, then by Theorem 3.2.2 and Proposition 5.2.2, HA2 ∖OA2

is a single orbit represented by reducible conics. If g = Ar, r ≥ 3, then by Theorem 3.2.2 and Proposition
5.2.2, the locus of reducible conics consists of two orbits.

Thus we focus on the cases where g is not of type A or C. To do this, define P ss to be the semi-simple
part of the isotropy group P at o ∈ Zg. Then the Dynkin diagram of P ss can be obtained by removing αj0

in the Dynkin diagram of G, and P ss acts transitively on the space of lines passing through o (Theorem
2.2.7). With respect to this action, let Q ⊂ P ss be an isotropy group. We may choose Q as the parabolic
subgroup of P ss generated by the complement of N(αj0) by [23, Theorem 4.8]. Also choose a line l0

passing through o such that StabP ss(l0) = Q.

Lemma 5.2.3. Assume that g is not of type A or C. Then we have the following:

1. The number of G-conjugacy classes of reducible conics in Zg is equal to

∣WP ss, Q/WP ss/WP ss, Q∣ − 1,

i.e. the number of double cosets WP ss, Q ⋅w ⋅WP ss, Q (w ∈WP ss) minus 1. For each g, the number
of double cosets is given in Table 5.1.

2. The G-stable prime divisor of Cnor
g given in Proposition 5.2.2 corresponds to the following colored

face:
⎧⎪⎪
⎨
⎪⎪⎩

Q≥0 ⋅ (−γ2) if g is Br (r ≥ 3), Dr (r ≥ 4) or G2;
Q≥0 ⋅ (−γ4) if g is Er (r = 6, 7, 8) or F4.

Proof. First of all, the number of double cosets can be easily computed from the diagram of the parabolic
subgroup Q in P ss, for instance by using the description of Weyl groups ([6, Plate I-IX]) and recipies for
the Hasse diagrams ([1, Chapter 4]).

We claim that the number of double cosets minus 1 is an upper bound of the number of conjugacy
classes of reducible conics. Note that each G-conjugacy class of reducible conics in Zg has a representative
which is singular at o. Moreover, if two reducible conics singular at o are G-conjugate, then they must
be P -conjugate since o is their unique singular point. In other words, there is a bijection between

{G-conjugacy classes of reducible conics in Zg}

and
{P -conjugacy classes of reducible conics in Zg singular at o}.

Each P -conjugacy class of reducible conics singular at o has a representative of form l0 ∪ l for some line l

such that l0 ∩ l = {o}. Since StabP ss(l0) = Q and P ss acts on the space of lines containing o transitively,
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g Diagram of Q ⊂ P ss ∣WP ss, Q/WP ss/WP ss, Q∣

Br (r ≥ 4) 3 r
6

B3 4

Dr (r ≥ 6)
3

r − 1

r
6

D5 6
D4 8
E6 4

E7 4

E8 4

F4 4
G2 2

Table 5.1: Number of double cosets of WP ss, Q in WP ss for the parabolic Q ⊂ P ss.

the number of P -conjugacy classes of such l0∪l is at most the number of Q-orbits in P ss/Q−{e⋅Q}, which
is equal to ∣WP ss, Q/WP ss/WP ss, Q∣ − 1 by the generalized Bruhat decomposition ([6, Chapter IV.2.5]).

Now let us show the equalities. Let D ⊂ Cnor
g be the inverse image of the G-stable prime divisor

given in Proposition 5.2.2. Then D corresponds to a 1-dimensional colored face of the colored cone of
Cnor

g . By its definition, the ray corresponding to D is contained in the colored faces corresponding to
orbits defined by reducible conics. Moreover, if g /= B3, G2, then the number of conjugacy classes of
planes contained in Zg (Table 3.5) and the number of colored faces of codimension 1 are same. Thus
by Lemma 4.2.1, if g /= B3, G2, then the ray corresponding to D is contained in the intersection of all
colored faces of codimension 1 in the colored cone of Cnor

g .
If g = G2, then Cnor

g has only one colored extremal ray, and the number of colored faces containing
it is 2. Thus the statement follows from Lemma 2.3.4.

If g is exceptional but /= G2, then Cnor
g has two colored extremal ray Q≥0 ⋅ (−γ1) and Q≥0 ⋅ (−γ4), and

the numbers of colored faces containing them are 5 and 4, respectively. By Lemma 2.3.4, the number
of colored faces containing the ray determined by D is at most 4. Therefore D corresponds to the ray
Q≥0 ⋅ (−γ4) and the statement follows.

If g = D4, the intersection of all colored faces of codimension 1 is Q≥0 ⋅ (−γ2). Thus D corresponds
to Q≥0 ⋅ (−γ2) and the number of colored faces containing it is 8.

If g is Br (r ≥ 4) or Dr (r ≥ 5), then the intersection of colored faces of codimension 1 is
Q≥0⟨−γ2, −γ4⟩. Thus D corresponds to either Q≥0⟨−γ2⟩ or Q≥0⟨−γ4⟩, and each of them is contained
in 6 and 7 number of colored faces, respectively. By Table 5.1, D corresponds to Q≥0⟨−γ2⟩ and the upper
bound is attained.

From now on, assume that g = B3, and recall the list of the colored faces given in Section 3.2.
Then the space of planes in ZB3 is homogeneous, and the unique B-stable plane in ZB3 , say P, is given
in Table 3.5. By Corollary 3.5.4, planar contact conics and planar reducible conic form single orbits
OP C and OP R in CB3 , respectively. Note that the stabilizer of a given planar contact conic in P is
contained in StabG(P). Since the space of smooth conics in P ≃ P2 is 5-dimensional, and since the map
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StabG(P) → Aut(P) is surjective by Corollary 3.5.4, an isotropy group of OP C in G is of codimension 5
in StabG(P). Since StabG(P) = Pα3 , this implies that

dimOP C = dim G/Pα3 + 5 = 11 = dim OB3 − 1.

That is, OP C is a G-stable divisor in CB3 . Hence its inverse image DP C in Cnor
B3

corresponds to a
1-dimensional colored face of the colored cone. Observe that the colored cone of Cnor

B3
has three 1-

dimensional colored faces. Thus there is a 1-dimensional colored face not corresponding to D nor DP C

and it corresponds to a G-stable divisor defined by non-planar contact conics.
Suppose that the number of conjugacy classes of reducible conics in ZB3 is strictly less than 3, which

is the number of double cosets minus 1. Then D corresponds to a ray Q≥0 ⋅ (−γi) for some i ∈ {1, 3},
and the number of conjugacy classes of reducible conics is equal to 2. It means that the orbit ONP R

corresponding to D is indeed a unique orbit of non-planar reducible conics, hence the number of conjugacy
classes of non-planar contact conics is

7 − 1(twistor) − 1(non-planar reducible) − 3(planar contact/reducible or double line) = 2

by Corollary 5.2.1. Thus one of the 2-dimensional colored faces corresponds to a conjugacy class O of non-
planar contact conics. However, since any 2-dimensional colored faces contain one of rays corresponding
to D or DP C , O is contained in the boundary of ONP R or the boundary of OP C . This is a contradiction
since both smoothness and non-planarity are open conditions. Therefore the number of conjugacy classes
of reducible conics is 3, and D corresponds to Q≥0 ⋅ (−γ2).

Theorem 5.2.4. 1. Let g = Cr, r ≥ 2. Then CCr ≃HCr consists of two orbits: one for twistor conics,
and one for non-planar contact conics.

2. Let g = A2. Then both CA2 and HA2 consist of two orbits: one for twistor conics, and one for
non-planar reducible conics.

3. Let g = Ar, r ≥ 3. Then both CAr and HAr consist of four orbits: one for twistor conics, one for
non-planar contact conics, and two for non-planar reducible conics.

4. Let g be Br with r ≥ 4 or Dr with r ≥ 5.

(a) Cg consists of eleven orbits: one for twistor conics, two for non-planar contact conics, two for
planar contact conics, three for non-planar reducible conics, two for planar reducible conics,
and one for double lines.

(b) Hg consists of fifteen orbits: one for twistor conics, two for non-planar contact conics, two for
planar contact conics, three for non-planar reducible conics, two for planar reducible conics,
three for non-planar double lines, and two for planar double lines.

5. Let g be either B3 or of an exceptional type other than G2.

(a) Cg consists of seven orbits: one for twistor conics, one for non-planar contact conics, one for
planar contact conics, two for non-planar reducible conics, one for planar reducible conics,
and one for double lines.

(b) Hg consists of nine orbits: one for twistor conics, one for non-planar contact conics, one for
planar contact conics, two for non-planar reducible conics, one for planar reducible conics,
two for non-planar double lines, and one for planar double lines.
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6. Let g =D4.

(a) CD4 consists of fifteen orbits: one for twistor conics, three for non-planar contact conics,
three for planar contact conics, four for non-planar reducible conics, three for planar reducible
conics, and one for double lines.

(b) HD4 consists of twenty one orbits: one for twistor conics, three for non-planar contact conics,
three for planar contact conics, four for non-planar reducible conics, three for planar reducible
conics, four for non-planar double lines, and three for planar double lines.

7. If g = G2, then both CG2 and HG2 consist of three orbits: one for twistor conics, one for non-planar
reducible conics, and one for non-planar double lines. In particular, every smooth conic in ZG2 is
a twistor conic.

Proof. For the case where g is of type A or C, see Subsection 3.1.1 (type C) and the discussion after
Proposition 5.2.2. Then the numbers follow immediately from Corollary 5.2.1.

Thus we may assume that g is not of type A or C. The statements for the Chow schemes follow
from Lemma 3.3.2, Corollary 3.5.4, Corollary 3.5.5, Lemma 5.2.3 and Corollary 5.2.1.

For Hg, recall that the morphism FC ∶ Hg → Cg gives a bijective correspondence for orbits of
smooth conics and reducible conics (Remark 3.1.3). Therefore

#(orbits in Hg) −#(orbits in Cg) =#(orbits of double lines in Hg) − 1

(as Cg contains a unique orbit of double lines). The left hand side can be computed by Corollary 5.2.1,
and then the statements follow from Corollary 3.5.4.

In Figures 5.1–5.8, we visualize the orbit structure of Hg for each g. In the following graphs, each

vertex represents a G-orbit in Hg (or a conjugacy class of conics in Zg), and each edge A

B

means that

B ⊂ A in Hg, and there is no other orbit B′ such that B ⊂ B′ ⊂ A. We also use the abbreviations
(N)PC, (N)PR, and (N)PD for (non-)planar contact, (non-)planar reducible, and (non-)planar double,
respectively.

In particular, the orbit structures of Hg for B3 and for exceptional Lie algebras /= G2 are different,
although the numbers of conjugacy classes are same (Theorem 5.2.4).
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(Twistor)

(NPC)

Figure 5.1: Orbit structure of Hg for g = Cr (r ≥ 2).

(Twistor)

(NPR)

Figure 5.2: Orbit structure of Hg for g = A2.

(Twistor)

(NPC) (NPR)

(NPR)

Figure 5.3: Orbit structure of Hg for g = Ar (r ≥ 3).

(Twistor)

(NPC) (NPR) (NPC)

(PC) (NPR) (NPD) (NPR) (PC)

(PR) (NPD) (NPD) (PR)

(PD) (PD)

Figure 5.4: Orbit structure of Hg for g = Br (r ≥ 4) or Dr (r ≥ 5).

(Twistor)

(NPC) (NPR) (PC)

(NPR) (NPD) (PR)

(NPD) (PD)

Figure 5.5: Orbit structure of Hg for g = B3.
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(Twistor)

(NPC) (NPC) (NPC) (NPR)

(PC) (PC) (PC) (NPR) (NPR) (NPR) (NPD)

(PR) (PR) (PR) (NPD) (NPD) (NPD)

(PD) (PD) (PD)

Figure 5.6: Orbit structure of Hg for g =D4.

(Twistor)

(NPC) (NPR)

(PC) (NPR) (NPD)

(PR) (NPD)

(PD)

Figure 5.7: Orbit structure of Hg for g = Er (r = 6, 7, 8) or F4.

(Twistor)

(NPR)

(NPD)

Figure 5.8: Orbit structure of Hg for g = G2.
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5.3 Smoothness of Hilbert Schemes

Let us prove smoothness of Hnor
g and determine the singular locus of Cnor

g .

Corollary 5.3.1. Let g be a complex simple Lie algebra.

1. Hnor
g is smooth. Moreover, the anticanonical line bundle of Hnor

g is

• not globally generated if g = Br (r /= 5 and r ≥ 3), Dr (r /= 6 and r ≥ 4), E8;

• globally generated but not ample if g = B5, D6, E7, F4;

• ample if g = Ar (r ≥ 2), Cr (r ≥ 2), E6, G2.

2. Cnor
g is

• not Q-Gorenstein if g = Br (r /= 5 and r ≥ 3), Dr (r ≥ 4), E6, E7, E8;

• Gorenstein Fano with terminal singularities but not Q-factorial if g = B5, F4;

• smooth Fano if g = Ar (r ≥ 2), Cr (r ≥ 2), G2.

In particular, the singular locus of Cnor
g is equal to the subset formed by double lines if g /= G2.

In fact, the smoothness of Hnor
g follows from [10, Proposition 3.6]. In the following paragraphs, we

present another proof using spherical geometry.

Proof. First, if g = Cr (r ≥ 2), then Hg(≃ Cg) is the Grassmannian (Subsection 3.1.1), hence the
statement follows. If g = G2, then Hnor

g (≃ Cnor
g ) is the Cayley Grassmannian, which is a smooth Fano

variety (Subsection 5.1.2). In the case where g = Ar (r ≥ 2), Hnor
g (≃Cnor

g ) is the blow-up of the product
of two Grassmannians (Subsection 5.1.1). In particular, it is smooth. Observe that its colored fan is
(V, ∅) (Theorem 3.2.2), and so Hnor

g is Fano by [35, Theorem 2.1].
Next, consider Hnor

g for other g. We apply Ruzzi’s smoothness criterion for symmetric varieties
in [37, Theorem 3.2]. Observe that the notation of [37] is slightly different from ours, since we use a
different definition for the restricted root system. In our setting (Section 2.3, Section 3.2), the criterion
can be formulated as follows.

Theorem 5.3.2 ([37, Theorem 3.2]). Assume that g is not of type A or C (hence ϵ is injective and R′Og

is a reduced root system). Let X be a simple Og-embedding, and assume that its unique closed orbit Y is
projective. For the standard Levi factor L of ⋂D∈D(Og)∖F(X) StabG(D), let RL, σ be the sub-root system of
R′Og

spanned by the roots of L. The simple factors of RL, σ are denoted by Rj
L, σ so that RL, σ = ∏

p
j=1 Rj

L, σ

for some integer p, and their simple roots {λj
i}i ∶= S′Og

∩Rj
L, σ are indexed as in [32].

Then X is smooth if and only if the following conditions are satisfied:

1. For every j, Rj
L, σ is of type A. Moreover, ∑p

j=1(lj + 1) is at most the rank of R′Og
where lj is the

rank of Rj
L, σ;

2. The cone C(X) is spanned by a basis B of 1
2 ⋅ Z⟨(R

′
Og
)∨⟩, i.e. the half of the coroot lattice of the

root system R′Og
;

3. In the doubled weight lattice 2 ⋅ (Z⟨(R′Og
)∨⟩)∗, we can index the dual basis of B as

{y1
1 , . . . , y1

l1+1, . . . , yq
1 . . . , yq

lq+1}

for some integers q(≥ p) and lj so that
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(a) ⟨yj
i , (2λh

k)
∨⟩ is = 1 if j = h and i = k, and = 0 otherwise;

(b) yj
i −

i
lj+1 yj

lj+1
is the ith fundamental weight of Rj

L, σ times 2 for 1 ≤ j ≤ p and 1 ≤ i ≤ lj.

We claim that the simple spherical varieties defined by maximal colored cones in Table 3.3 satisfy
the conditions in Theorem 5.3.2. Indeed, in each case, if πi denotes the ith fundamental weight of R′Og

,
then RL, σ, B and its dual basis {yj

i } can be chosen as follows.

1. g = Br (r ≥ 4) or Dr (r ≥ 5): For (Q≥0⟨−γ2, −γ4, λ∨2 , λ∨4⟩, {D2, D4}),

RL, σ =
λ2 λ4

= A1 ×A1,

B = {−
1
2

λ∨1 − λ∨2 − λ∨3 −
1
2

λ∨4 , −
1
2

λ∨1 − λ∨2 −
3
2

λ∨3 − λ∨4 ,
1
2

λ∨2 ,
1
2

λ∨4} ,

y1
1 ∶= −4π1 + 2π2, y1

2 ∶= −6π1 + 2π3, y2
1 ∶= 2π1 − 2π3 + 2π4, y2

2 ∶= 4π1 − 2π3.

For (Q≥0⟨−γ1, −γ2, −γ4, λ∨2⟩, {D2}),
RL, σ =

λ2
= A1,

B = {−λ∨1 − λ∨2 − λ∨3 −
1
2

λ∨4 , −
1
2

λ∨1 − λ∨2 − λ∨3 −
1
2

λ∨4 , −
1
2

λ∨1 − λ∨2 −
3
2

λ∨3 − λ∨4 ,
1
2

λ∨2} ,

y1
1 ∶= 2π2 − 4π3 + 4π4, y1

2 ∶= 2π1 − 6π3 + 8π4, y2
1 ∶= −2π1 + 2π3 − 2π4, y2

2 ∶= 2π3 − 4π4.

2. g = B3: For (Q≥0⟨−γ1, −γ2, λ∨2⟩, {D2}),

RL, σ =
λ2
= A1,

B = {−λ∨1 − λ∨2 −
1
2

λ∨3 , −
1
2

λ∨1 − λ∨2 −
1
2

λ∨3 ,
1
2

λ∨2} ,

y1
1 ∶= 2π2 − 4π3, y1

2 ∶= 2π1 − 4π3, y2
1 ∶= −2π1 + 2π3.

For (Q≥0⟨−γ2, −γ3, λ∨2⟩, {D2}),
RL, σ =

λ2
= A1,

B = {−
1
2

λ∨1 − λ∨2 −
1
2

λ∨3 , −λ∨1 − 2λ∨2 −
3
2

λ∨3 ,
1
2

λ∨2} ,

y1
1 ∶= −4π1 + 2π2, y1

2 ∶= −6π1 + 4π3, y2
1 ∶= 2π1 − 2π3.

3. g =D4: For each i ∈ {1, 3, 4}, let j /= k be distinct elements in {1, 3, 4}∖{i}. For (Q≥0⟨−γ2, −γj , −γk, λ∨2⟩,
{D2}),

RL, σ =
λ2
= A1,

B = {−
1
2

λ∨1 − λ∨2 −
1
2

λ∨3 −
1
2

λ∨4 ,−λ∨2 −
1
2

λ∨i −
1
2

λ∨j − λ∨k , −λ∨2 −
1
2

λ∨i − λ∨j −
1
2

λ∨k ,
1
2

λ∨2} ,

y1
1 ∶= 2π2 − 4πi, y1

2 ∶= 2π1 + 2π3 + 2π4 − 8πi, y2
1 ∶= 2πi − 2πj , y2

2 ∶= 2πi − 2πk.

4. g = Er (r = 6, 7, 8) or F4: For (Q≥0⟨−γ1, −γ4, λ∨1 , λ∨4⟩, {D1, D4}),

RL, σ =
λ1 λ4

= A1 ×A1,

B = {−λ∨1 −
3
2

λ∨2 − 2λ∨3 − λ∨4 ,−
1
2

λ∨1 − λ∨2 −
3
2

λ∨3 − λ∨4 ,
1
2

λ∨1 ,
1
2

λ∨4} ,

y1
1 ∶= 2π1 − 4π2 + 2π3, y1

2 ∶= −6π2 + 4π3, y2
1 ∶= 4π2 − 4π3 + 2π4, y2

2 ∶= 8π2 − 6π3.
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For the remaining statements, we use the well-known criteria for singularities of spherical varieties.
Our main reference is [33]. Let us briefly explain the criteria together with the necessary data given in
Table 5.2. Recall that the valuation cone V is a cone in the vector space Q⟨(R′Og

)∨⟩. By taking its negative
dual −V∨ ∶= {m ∈ Q⟨R′Og

⟩ ∶ ⟨m, V⟩ ≤ 0} and the embedding Q⟨R′Og
⟩ = χ(T ′/T ′ ∩Gσ) ⊗Q ↪ χ(T ′) ⊗Q =

Q⟨R′⟩, we obtain a cone in Q⟨R′⟩. We call the primitive elements of −V∨ ∩ΛOg
(= −V∨ ∩χ(T ′/T ′ ∩Gσ))

in Q⟨R′⟩ the spherical roots of Og. Now for each color D ∈ D(Og), choose a simple root α′ ∈ S′ which is
not a root of (the standard Levi part of) StabG(D). That is, α′ ‘moves’ the divisor D ⊂ Og. Then we
say that

D is of type

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(a) if α′ is a spherical root;
(2a) if 2α′ is a spherical root;
(b) otherwise,

and the type of D does not depend on the choice of α′. If D is of type (a) or (2a), then we put aD ∶= 1.
If D is of type (b), then αD is defined as follows. Let S′′ ⊂ S′ be the set of simple roots which are not
roots of (the standard Levi part of) the stabilizer of the open B′-orbit in Og, and R′′ ⊂ (R′)+ the set of
positive roots which are not generated by S′ ∖ S′′. Then for D of type (b) and α′ moving D, define

aD ∶= ∑
β′∈R′′

⟨β′ ∣α′⟩.

Now for an Og-embedding X, its anti-canonical divisor can be written as a Weil divisor

−KX = ∑
G-stable divisor D⊂X

D + ∑
Di∈D(Og)

aDi
⋅ Di.

See [33, Theorem 2.20] for details. The spherical roots, types and integers aD of the colors of Og can be
deduced from the Satake diagram (Table 3.1) and Theorem 2.3.11, and their list is given in Table 5.2.

Now the statement on the singularities of Cnor
g can be obtained from the criteria for Q-factoriality

([33, Proposition 3.3]), (Q-)Cartier divisors ([33, Proposition 4.2]) and terminal singularities ([33, Propo-
sition 5.2]) Similarly, for the positivity of anti-canonical divisors of Hnor

g and Cnor
g , the criteria for global

generatedness and ampleness in [33, Proposition 2.19] can be applied. We omit the detailed computa-
tion.
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g Spherical Roots of Og Type and Coefficient aDi of Color Di

Br (r ≥ 5)
2α′i (1 ≤ i ≤ 3), Di (1 ≤ i ≤ 3): (2a), aDi = 1
2α′4 +⋯ + 2α′r D4: (b), aD4 = 2r − 7

Br (r = 3, 4) 2α′i (1 ≤ i ≤ r) Di (1 ≤ i ≤ r): (2a), aDi = 1

Dr (r ≥ 6)
2α′i (1 ≤ i ≤ 3), Di (1 ≤ i ≤ 3): (2a), aDi = 1

2α′4 +⋯ + 2α′r−2 + α′r−1 + α′r D4: (b), aD4 = 2(r − 4)

D5
2α′i (1 ≤ i ≤ 3), Di (1 ≤ i ≤ 3): (2a), aDi = 1

α′4 + α′5 D4: (b), aD4 = 2
D4 2α′i (1 ≤ i ≤ 4) Di (1 ≤ i ≤ 4): (2a), aDi = 1

E6

α′1 + α′5, D1: (b), aD1 = 2
α′2 + α′4, D2: (b), aD2 = 2

2α′3, D3: (2a), aD3 = 1
2α′6, D4: (2a), aD4 = 1

E7

α′1 + 2α′2 + α′3, D1: (b), aD1 = 4
α3 + 2α′4 + α′7, D2: (b), aD2 = 4

2α′5, D3: (2a), aD3 = 1
2α′6 D4: (2a), aD4 = 1

E8

2α′1, D1: (b), aD1 = 8
2α′2, D2: (b), aD2 = 8

2α′3 + 2α′4 + 2α′5 + α′6 + α′8, D3: (2a), aD3 = 1
α′4 + 2α′5 + 2α′6 + 2α′7 + α′8 D4: (2a), aD4 = 1

F4 2α′i (1 ≤ i ≤ 4) Di (1 ≤ i ≤ 4): (2a), aDi = 1
G2 2α′i (1 ≤ i ≤ 2) Di (1 ≤ i ≤ 2): (2a), aDi = 1

Table 5.2: Spherical roots and type of colors of Og.
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5.4 Minimial Rational Curves on Hilbert Schemes

As a final corollary, we describe minimal rational curves on the smooth projective symmetric variety
Hnor

g (Corollary 5.3.1), in terms of conics on Zg. To do this, recall the following definition:

Definition 5.4.1. Let X be a smooth projective variety, and K ⊂ RatCurves(X) (Subsection 2.2.2) an
irreducible component.

1. K is called a family of minimal rational curves on X if for general x ∈ X, Kx is nonempty and
projective.

2. Assume that K is a family of minimal rational curves. For general x ∈X and the rational map

τx ∶ Kx ⇢ P(TxX), [C] ↦ [TxC]

(defined over the locus of rational curves smooth at x), the closure of the image of τx is called the
variety of minimal rational tangents (VMRT for short) of K at x.

A family of minimal rational curves exists on X if and only if X is uniruled ([20, Proposition
II.2.14]). In particular, since spherical varieties are rational (this is because any B-orbit is rational;
see [5, V.15.13.(a)]), a smooth projective spherical variety admits a family of minimal rational curves.
Especially, minimal rational curves on symmetric varieties are studied by [8] and [9]. Let us recall a
special case of their result:

Theorem 5.4.2 ([8], [9]; cf. Remark 5.4.3). Let G′ be a connected simple Lie group acting on a smooth
projective variety X. Suppose that X is G′-symmetric. Let X0 be an open G′-orbit in X, o′ ∈ X0 a
point, and K ′ ∶= StabG′(o

′). Assume that K ′ is semi-simple. Then we have the following:

1. X admits a unique family K of minimal rational curves. Moreover, it has the following properties:

(a) Ko′ consists of smooth rational curves.

(b) Ko′ contains a unique closed orbit under the action of the identity component (K ′)0, containing
a rational curve exp(l) ⋅ o′ for a highest weight line l ⊂ To′X.

(c) Ko′ is smooth and connected.

2. If furthermore X has no color as a G′/K ′-embedding, then the following hold:

(a) For the VMRT Co′ of K at o′, the tangent map τo′ ∶ Ko′ → Co′ (Definition 5.4.1) is an isomor-
phism.

(b) If the restricted root system of G′/K ′ is not of type A, then Ko′ is K ′-homogeneous.

Remark 5.4.3. The statements of Theorem 5.4.2 can be deduced as follows. Whenever K ′ is semi-
simple, the isotropy representation of G′/K ′ is (K ′)0-irreducible ([45, §8.12]). Thus the first statement
follows from [8, Proposition 2.6], and the second statement follows from [9, Theorem 5.1–5.2].

Now we consider minimal rational curves on Hnor
g , which is a smooth projective symmetric variety

(Corollary 5.3.1). If g is of type A or C, then we have a concrete description of Hnor
g (Subsections 3.1.1

and 5.1.1), hence its minimal rational curves can be easily described.
Therefore, from now on, we only consider the case where g is not of type A or C. To apply Theorem

5.4.2, let Dg be a smooth projective Og-embedding without color and equipped with a G-equivariant
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g Do′ ↪ P(To′Dg)

Br (r ≥ 4) Q2 ×Q2r−5

Dr (r ≥ 5) Q2 ×Q2r−6

B3 ν2(P1) ×Q2

D4 Q2 ×Q2

E6 Gr(3, 6) × P1

E7 OG(6, 12) × P1

E8 E7/P1 × P1

F4 LG(3, 6) × P1

G2 P1 × ν3(P1)

Table 5.3: VMRT Do′ of an Og-embedding Dg without color.

birational morphism π ∶ Dg → Hnor
g . Such Dg exists, since, for example, one can take an equivariant

resolution of singularities of the decoloration of Hnor
g and then apply the equivariant Chow lemma. Recall

that R′Og
is not of type A unless g = C2, and that Gσ is semi-simple unless g is of type A (Theorem

3.2.1). Therefore Dg satisfies the assumptions in Theorem 5.4.2. Then the following corollary is a direct
consequence of Theorem 5.4.2 and [9, Table 1].

Corollary 5.4.4. Assume that g is not of type A or C. Let o′ ∶= [Cρ] ∈ Og (Lemma 3.3.3) be the base
point. Suppose that Dg is a smooth projective Og-embedding without color. Then Dg has a unique family
D of minimal rational curves, and Do′ is Gσ-homogeneous and consisting of smooth rational curves. Its
VMRT Do′ ↪ P(To′Dg) at o′ ∈ Og(⊂Dg) is described in Table 5.3.

Now we state the main result of this section.

Theorem 5.4.5. In the setting of Corollary 5.4.4, assume that there is a G-equivariant birational
morphism π ∶ Dg → Hnor

g . Then Hnor
g admits a unique family H of minimal rational curves, and the

morphism π induces an isomorphism π∗ ∶ Do′ →Ho′ , [C] ↦ [π(C)].

To prove Theorem 5.4.5, we need a better understanding of minimal rational curves on Hnor
g . From

now on, assume that g is not of type A or C, and let H be a (unique) family of minimal rational curves
on Hnor

g , which exists by Theorem 5.4.2. Then since

To′Og ≃ g/g
σ
≃ g−1 ⊕ g1

as Gσ-representations, gρ−αj0
is a highest weight line, where αj0 is the unique neighbor of −ρ in the

extended Dynkin diagram of g (Section 2.1). Thus the rational curve exp(gρ−αj0
) ⋅ o′ is in the unique

closed Gσ-orbit in Ho′ .
We describe the unique closed Gσ-orbit inHo′ in terms of conics on Zg. Let x be a point in Cρ(⊂ Zg).

Recall that P(TxZg) ∖P(Dx) parametrizes twistor conics passing through x on Zg (Theorem 3.3.4), and
that the space Cx of lines through x is in the hyperplane P(Dx) (Subsection 2.2.2). For each [l] ∈ Cx,
consider the linear line joining [TxCρ] ∈ P(TxZg) ∖ P(Dx) and [l] ∈ P(Dx), denoted by o′l. Then every
point in o′l ∖ {[l]} is lying in P(TxZg) ∖ P(Dx), hence corresponds to a twistor conic through x. Thus
we may define

Tx, [l] ∶= {[C] ∈ Og ∶ x ∈ C, [TxC] ∈ o′l}, ∀x ∈ Cρ, [l] ∈ Cx.
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This is a rational curve on Hnor
g , since its open part is isomorphic to o′l ∖ {[l]} ≃ C1. In fact, we have

To, [g−αj0
] = exp(gρ−αj0

) ⋅ o′, (5.1)

since for t ∈ C,

exp(t ⋅Eρ−αj0
) ⋅Cρ = exp(t ⋅Eρ−αj0

) ⋅ exp(g−ρ) ⋅ o = exp(Adt⋅Eρ−αj0
g−ρ) ⋅ o

represents a point [E−ρ + t ⋅Nρ−αj0 ,−ρE−αj0
] in P(ToZg), which is in the line joining [ToCρ] and [g−αj0

].
Moreover, since the Lie algebra of the standard Levi subgroup L of P is g0, L fixes both o ∈ Zg and
o′ ∈Hnor

g , and for any g ∈ L, we have

g ⋅ To, [l] = To, g⋅[l], ∀[l] ∈ Co.

Since L acts on Co transitively (Subsection 2.2.2), we conclude that each To, [l] ([l] ∈ Co) represents a
point in Ho′ , and that

{[To, [l]] ∈ Ho′ ∶ [l] ∈ Co}

is L-homogeneous. Since Gσ acts on Cρ transitively and

k ⋅ To, [l] = Tk⋅o, k⋅[l], ∀k ∈ Gσ,

we see that
{[Tx, [l]] ∈ Ho′ ∶ x ∈ Cρ, [l] ∈ Cx}

is Gσ-homogeneous. In fact, it is projective by the equation (5.1) and Theorem 5.4.2.

Lemma 5.4.6. Keep the previous notation. For each x ∈ Cρ and [l] ∈ Cx, Tx, [l] ∖Og consists of a single
point t∞ such that

1. t∞ is represented by a non-planar reducible conic on Zg, and

2. G ⋅ t∞ is of codimension 1 in Hnor
g .

Remark 5.4.7. Lemma 5.4.6 means that t∞ represents a general point of the prime divisor given in
Proposition 5.2.2.

Proof of Lemma 5.4.6. Recall that Tx, [l] ∖Og is isomorphic to C1, hence its boundary is a single point
t∞. To show the statements on t∞, by homogeneity, we may assume that x = o and l = g−αj0

mod p.
Then the members of To, [l] ∖ {t∞} can be written as for t ∈ C,

exp(t ⋅Eρ−αj0
) ⋅Cρ = Zg ∩ P(Adt⋅Eρ−αj0

Eρ, Adt⋅Eρ−αj0
Hρ, Adt⋅Eρ−αj0

E−ρ).

Since

Adt⋅Eρ−αj0
Eρ = Eρ,

Adt⋅Eρ−αj0
Hρ =Hρ − t ⋅ ⟨ρ, ρ − αj0⟩ ⋅Eρ−αj0

,

Adt⋅Eρ−αj0
E−ρ = E−ρ + t ⋅Nρ−αj0 ,−ρ ⋅E−αj0

,

we have

P(Adt⋅Eρ−αj0
Eρ, Adt⋅Eρ−αj0

Hρ, Adt⋅Eρ−αj0
E−ρ) = P(Eρ, Hρ−t⋅⟨ρ, ρ−αj0⟩⋅Eρ−αj0

, E−ρ+t⋅Nρ−αj0 ,−ρ ⋅E−αj0
).
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By taking t→∞, we see that the limit curve is contained in

Zg ∩ P(Eρ, Eρ−αj0
, E−αj0

).

As
exp(g−αj0

) ⋅ [Eρ] = P(Eρ, Eρ−αj0
)

(which is the line tangent to l at o) and

exp(gρ) ⋅ [E−αj0
] = P(E−αj0

, Eρ−αj0
),

the intersection contains a reducible conic singular at [gρ−αj0
]. In fact, since the line P(Eρ, E−αj0

) is
not contained in Zg, we see that

t∞ = [P(Eρ, Eρ−αj0
) ∪ P(E−αj0

, Eρ−αj0
)].

Now it is enough to show that the G-orbit of the reducible conic

P(Eρ, Eρ−αj0
) ∪ P(E−αj0

, Eρ−αj0
)

is of dimension (4n − 1). In fact, since the reflection sαj0
∈W acts by

sαj0
(ρ) = ρ − ⟨ρ∣αj0⟩ ⋅ αj0 = ρ − αj0

and
sαj0
(αj0) = −αj0 ,

we may compute the isotropy group of the reducible conic

P(Eρ−αj0
, Eρ) ∪ P(Eαj0

, Eρ).

Since its singular point is o = [Eρ], the identity component of the isotropy group is equal to

{g ∈ P ∶ Adgg−αj0
≡ g−αj mod p, Adggαj0−ρ ≡ gαj−ρ mod p}.

Hence its Lie algebra is

{X ∈ p ∶ [X, g−αj0
] ≤ g−αj0

mod p, [X, gαj0−ρ] ≤ gαj0−ρ mod p} .

Observe that

{X ∈ p ∶ [X, g−αj0
] ≤ g−αj0

mod p} = b⊕ ⊕
α<0, mj0(α)=0, α−αj0 /∈R

gα

= b⊕ ⊕
α<0, mj0(α)=0, ⟨α, αj0 ⟩=0

gα,

{X ∈ p ∶ [X, gαj0−ρ] ≤ gαj0−ρ mod p} = t⊕ ⊕
α<0, mj0(α)=0

gα ⊕ g1
⊕ ⊕

α>0, mj0(α)=0, α+αj0−ρ/∈R
gα

= t⊕ ⊕
α<0, mj0(α)=0

gα ⊕ g1
⊕ ⊕

α>0, mj0(α)=0, ⟨α,αj0−ρ⟩=0
gα

= t⊕ ⊕
α<0, mj0(α)=0

gα ⊕ g1
⊕ ⊕

α>0, mj0(α)=0, ⟨α,αj0 ⟩=0
gα.

(For the second part, note that αj0 − ρ is the minimum in R ∖ {−ρ}). Therefore the Lie algebra of the
isotropy group is

t⊕ ⊕
mj0(α)=0, ⟨α, αj0 ⟩=0

gα ⊕ g1.
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In other words, the tangent space of the G-orbit of the reducible conic can be identified with

g−2 ⊕ g−1 ⊕ ⊕
mj0(α)=0,⟨α,αj0 ⟩/=0

gα.

Its dimension is
dim Zg +#(roots of Pαj0

) −#(root of Pαj0 , N(αj0)).

Since

#(roots of Pαj0
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣RA1×Br−2 ∣ = 2 + 2(r − 2)2 (g = Br, r ≥ 4)
∣RA1×A1 ∣ = 2 + 2 (g = B3)

∣RA1×Dr−2 ∣ = 2 + 2(r − 2)(r − 3) (g =Dr, r ≥ 5)
∣RA1×A1×A1 ∣ = 2 + 2 + 2 (g =D4)

∣RA5 ∣ = 30 (g = E6)

∣RD6 ∣ = 60 (g = E7)

∣RE7 ∣ = 126 (g = E8)

∣RC3 ∣ = 18 (g = F4)

∣RA1 ∣ = 2 (g = G2)

and

#(roots of Pαj0 , N(αj0)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣RBr−3 ∣ = 2(r − 3)2 (g = Br, r ≥ 5)
∣RA1 ∣ = 2 (g = B4)

0 (g = B3)

∣RDr−3 ∣ = 2(r − 3)(r − 4) (g =Dr, r ≥ 6)
∣RA1×A1 ∣ = 2 + 2 (g =D5)

0 (g =D4)

∣RA2×A2 ∣ = 6 + 6 (g = E6)

∣RA5 ∣ = 30 (g = E7)

∣RE6 ∣ = 72 (g = E8)

∣RA2 ∣ = 6 (g = F4)

0 (g = G2)

we see that

#(roots of Pαj0
) −#(root of Pαj0 , N(αj0)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4r − 8 (g = Br, r ≥ 3)
4r − 10 (g =Dr, r ≥ 4)

18 (g = E6)

30 (g = E7)

54 (g = E8)

12 (g = F4)

2 (g = G2)

= 2n − 2.

Therefore
dim Zg +#(roots of Pαj0

) −#(root of Pαj0 , N(αj0)) = 4n − 1.

Proof of Theorem 5.4.5. Hnor
g admits exactly one family H of minimal rational curves and Ho is ir-

reducible by Theorem 3.2.1 and Theorem 5.4.2. Since π is a birational morphism, π induces a Gσ-
equivariant embedding π∗ ∶ Do ↪ Ho by [9, Lemma 2.4 and Remark 2.5]. Since Do is Gσ-homogeneous
and Ho is irreducible, to show that π∗ is surjective, it is enough to show that dimDo = dimHo. To do
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Figure 5.9: Locus in Zg swept by conics parametrized by a minimal rational curve on Hnor
g .

this, recall that for a rational curve [C] ∈ Do, and its image [π(C)] ∈ Ho, both C and π(C) are free,
hence we have

dimDo = degC K−1
Dg
− 2, and dimHo = degπ(C)K−1

Hnor
g
− 2.

(See [20, Theorems II.1.7 and II.2.16].) Thus we need to show that C and π(C) have the same anti-
canonical degree. In fact, by Lemma 5.4.6, if t∞ ∈ π(C) ∖ Og, then G ⋅ t∞ is of codimension 1, hence
the birational morphism π ∶ Dg → Hnor

g is an isomorphism over U ∶= Og ∪ (G ⋅ t∞) (which is an open
subset of Hnor

g since there are only finitely many G-orbits). Since π(C) ⊂ U , C and π(C) have the same
anti-canonical degree. Hence the statement follows.

Remark 5.4.8. Theorem 5.4.5, together with Table 5.3 and Table 2.2, shows that the VMRT of Hnor
g

is isomorphic to P1 × Co. This reflects the fact that the VMRT of Hnor
g at [Cρ] consists of [To′(Tx, [l])]

for x ∈ Cρ(≃ P1) and [l] ∈ Co.

Finally, we describe the locus swept by conics parametrized by Tx, [l] in Zg.

Proposition 5.4.9. Assume that g is not of type A or C. Let x be a point in Zg, C a twistor conic,
and L a line on Zg such that x ∈ C ∩ L. Put l ∶= TxL, and let a be the smallest Lie subalgebra of g such
that C ∪ L ⊂ P(a).

1. dim a = 5, and the sl2-algebra generated by C is a maximal reductive subalgebra of a. In particular,
the unipotent radical u of a is of dimension 2.

2. The line L′ ∶= P(u) does not intersect with the plane spanned by C, and [L ∪ L′] is the unique
boundary point Tx, [l] ∖Og.

3. The intersection P(a) ∩Zg is the union of conics parametrized by Tx, [l].

4. P(a)∩Zg is a cubic scroll in P(a) with its directrix L′, and L is a line of the ruling. More precisely,

P(a) ∩Zg = ⋃
s∈L′

P(s, f(s))

for an isomorphism f ∶ L′ → C such that L = P(s, f(s)) for some s ∈ L′.

Proof. As before, we may assume that

x = o(= [Eρ]), C = Cρ(= P(Eρ, Hρ, E−ρ) ∩Zg), L = P(Eρ, Eρ−αj0
) (l = g−αj0

mod p).

Then
a = C⟨Eρ, Hρ, E−ρ, Eρ−αj0

, E−αj0
⟩
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and its unipotent radical u is C⟨Eρ−αj0
, E−αj0

⟩. Now the first two statements follow by the proof of
Lemma 5.4.6, since L′ = P(Eρ−αj0

, E−αj0
).

To show the third statement, consider the homogeneous coordinate

[x ⋅Eρ + y ⋅Hρ + z ⋅E−ρ + u ⋅Eρ−αj0
+w ⋅E−αj0

] ∈ P(a).

If a point in P(a) is contained in Zg, it satisfies the relations

⟨x ⋅Eρ + y ⋅Hρ + z ⋅E−ρ + u ⋅Eρ−αj0
+w ⋅E−αj0

, x ⋅Eρ + y ⋅Hρ + z ⋅E−ρ + u ⋅Eρ−αj0
+w ⋅E−αj0

⟩ = 0 (5.2)

and
(adx⋅Eρ+y⋅Hρ+z⋅E−ρ+u⋅Eρ−αj0

+w⋅E−αj0
)

3
(E−ρ) = 0. (5.3)

To simplify the notation, we define

c ∶=
⟨ρ, ρ⟩

2
= ⟨ρ, αj0⟩ = ⟨ρ, ρ − αj0⟩ and N ∶= Nρ−αj0 ,−ρ = N−ρ, αj0

= Nαj0 , ρ−αj0

(see [14, Lemma 5.1]). Then by [14, Theorem 5.5], we can choose the root vectors so that

N2
= c /= 0.

Now the equation (5.2) reads
y2c + xz = 0.

On the other hand, for the equation (5.3), we have

[x ⋅Eρ + y ⋅Hρ + z ⋅E−ρ + u ⋅Eρ−αj0
+w ⋅E−αj0

, E−ρ] = x ⋅Hρ + y(−2c) ⋅E−ρ + uN ⋅E−αj0
,

(adx⋅Eρ+y⋅Hρ+z⋅E−ρ+u⋅Eρ−αj0
+w⋅E−αj0

)
2
(E−ρ)

=[x ⋅Eρ + y ⋅Hρ + z ⋅E−ρ + u ⋅Eρ−αj0
+w ⋅E−αj0

, x ⋅Hρ + y(−2c) ⋅E−ρ + uN ⋅E−αj0
]

=x2
(−2c) ⋅Eρ + xy(−2c) ⋅Hρ + xuN(−N) ⋅Eρ−αj0

+ y2
(−2c)2 ⋅E−ρ + yuN(−c) ⋅E−αj0

+ zx(2c) ⋅E−ρ

+ ux(−c) ⋅Eρ−αj0
+ uy(−2c)N ⋅E−αj0

+wxc ⋅E−αj0

=x2
(−2c) ⋅Eρ + xy(−2c) ⋅Hρ + (2c)(y22c + zx) ⋅E−ρ + xu(−2c) ⋅Eρ−αj0

+ c(−3yuN + xw) ⋅E−αj0

and so

(adx⋅Eρ+y⋅Hρ+z⋅E−ρ+u⋅Eρ−αj0
+w⋅E−αj0

)
3
(E−ρ)

=x2y(2c)2 ⋅Eρ + x(2c)(y22c + zx) ⋅Hρ + xc(−3yuN + xw)(−N) ⋅Eρ−αj0

+ yx2
(−2c)(2c) ⋅Eρ + (2c)(−2c)y(y22c + zx) ⋅E−ρ + yxu(−2c2

) ⋅Eρ−αj0
+ (−c2

)y(−3yuN + xw) ⋅E−αj0

+ zx2
(2c) ⋅Hρ + zxy(−2c)(2c) ⋅E−ρ + zxu(−2c)(−N) ⋅E−αj0

+ uxy(2c2
) ⋅Eρ−αj0

+ (2cN)u(y22c + zx) ⋅E−αj0

+wx2
(−2c)N ⋅Eρ−αj0

+wxy(−2c2
) ⋅E−αj0

=3xcN(yuN − xw) ⋅Eρ−αj0
+ cN(7y2uc − 3xywN + 4xzu) ⋅E−αj0

(∵y2c + xz = 0).
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Therefore Zg ∩ P(a) is contained in the locus of

y2c + zx = 0, x(yuN − xw) = 0, 7y2uc − 3xywN + 4xzu = 0.

If x = 0, then the equations imply y2 = 0, i.e.

(x = 0) ∩Zg ∩ P(a) ⊂ P(E−ρ, Eρ−αj0
, E−αj0

).

Since
P(E−ρ, E−αj0

) ∪ P(Eρ−αj0
, E−αj0

) ⊂ Zg

but P(E−ρ, Eρ−αj0
) = sρ(P(Eρ, E−αj0

)) /⊂ Zg, we conclude that

(x = 0) ∩Zg ∩ P(a) = P(E−ρ, E−αj0
) ∪ P(Eρ−αj0

, E−αj0
) = L

′′
∪ L

′

where L′′ ∶= P(E−ρ, E−αj0
). If x /= 0, then on the affine open subset (x = 1), we have

z = −y2c, w = yuN (7y2uc − 3ywN + 4zu = 0).

Thus

(x /= 0) ∩Zg ∩ P(a) ⊂ {[Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ + u ⋅Eρ−αj0
+ (yuN) ⋅E−αj0

] ∶ y, u ∈ C} .

For y, u ∈ C, if y /= 0, then

exp(−u

yc
⋅Eρ−αj0

) ⋅ [Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ] = [Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ + u ⋅Eρ−αj0
+ (yuN) ⋅E−αj0

],

which implies that

{[Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ + u ⋅Eρ−αj0
+ (yuN) ⋅E−αj0

] ∶ y ∈ C×, u ∈ C} ⊂ ⋃
[C′]∈To, [l]∩Og

C ′.

In fact, for [C ′] ∈ To, [l] ∩Og, every element in C ′ ∖ L′′ can be written in form

exp(−u

yc
⋅Eρ−αj0

) ⋅ [Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ]

for some 0 /= y ∈ C and u ∈ C, hence we have

{[Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ + u ⋅Eρ−αj0
+ (yuN) ⋅E−αj0

] ∶ y ∈ C×, u ∈ C} = ⋃
[C′]∈To, [l]∩Og

C ′ ∖ L′′,

and it is contained in Zg ∩ P(a). If y = 0, then

[Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ + u ⋅Eρ−αj0
+ (yuN) ⋅E−αj0

] = [Eρ + u ⋅Eρ−αj0
] ∈ L,

hence
(x /= 0) ∩Zg ∩ P(a) = ⋃

[C′]∈To, [l]∩Og

(C ′ ∖ L′′) ∪ L.

Therefore
Zg ∩ P(a) = ⋃

[C′]∈To, [l]∩Og

C ′ ∪ L ∪ L′ = ⋃
[C′]∈To, [l]

C ′.

It is remained to describe P(a) ∩Zg as a cubic scroll. Consider an isomorphism

f ∶ L′ → Cρ, [s1 ⋅Eρ−αj0
+ s2N ⋅E−αj0

] ↦ [s2
1 ⋅Eρ + s1s2 ⋅Hρ + (−s2

2c) ⋅E−ρ].

71



Then for s = [s1 ⋅Eρ−αj0
+ s2N ⋅E−αj0

], we have

Ls ∶= P(s, f(s)) =

⎧⎪⎪
⎨
⎪⎪⎩

P(Eρ−αj0
+ yN ⋅E−αj0

, Eρ + y ⋅Hρ + (−y2c) ⋅E−ρ) (s1 /= 0, y ∶= s2/s1)

P(E−αj0
, E−ρ)(= L

′′) (s1 = 0).

In particular, L[Eρ−αj0
] = L and L[E−αj0

] = L
′′. Thus

⋃
s∈L′
Ls ∩ (x = 0) = L′ ∪ L′′ = Zg ∩ P(a) ∩ (x = 0)

and
⋃

s∈L′
Ls ∩ (x /= 0) = ⋃

y∈C
L[Eρ−αj0

+y⋅E−αj0
] ∩ (x /= 0) = Zg ∩ P(a) ∩ (x /= 0).
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