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Abstract
For a simple Lie algebra g, we study spaces of conics on the adjoint variety Z; c P(g). First, we prove
that for the simply connected Lie group G associated to g, the space of twistor conics, i.e. smooth conics
transverse to the contact distribution D of Zg, is a homogeneous G-symmetric variety. In particular, this
implies that the space of smooth conics on Z; is a G-spherical variety. Then we apply Luna-Vust theory
for spherical varieties to three compactifications of the space of smooth conics: the Hilbert scheme Hy,
the Chow scheme Cg, and the space CoCj of complete conics. Our main result is the computation of
the colored fans of the three compactifications.

Next, we present several applications of the main result. Namely, the conjugacy classes of conics on
Z4 with respect to the natural G-action are explicitly described. Especially, we show that the Go-adjoint
variety does not contain a smooth conic tangent to the contact distribution. We also prove smoothness
of the normalized Hilbert scheme Hg°". Finally, we interpret minimal rational curves on Hg°" in terms

of conics on Zy.

Keywords Lie group, adjoint variety, conic, Luna-Vust theory, spherical variety, Hilbert scheme



Contents

(@7 81 7= 2 1 11 J
List of Tables . . . . . o o i i e e e e e e e e e e e e e e e e e e e e e e
List of Figures . . . . . . . . . 0 i i i i e e e e e

Chapter 1. Introduction
1.1 Stateofthe Art ... ... ... . . . .. . . e
1.1.1 Rational Curves on Rational Homogeneous Spaces . . . .
1.1.2 Family of Conics Parametrized by Riemannian Sym-
metric Spaces . . . . . ... oo e e
1.1.3 Luna-Vust Theory for Spherical Varieties . . . . . ... ..
1.2 Main Results and Structure of the Article . . ... ... ......

Chapter 2. Preliminaries
2.1 Adjoint Variety and Contact Distribution .. ... .........
2.2 Parameter Spaces of Rational Curves .. ... ............
2.2.1 Hilbert Schemes and Chow Schemes . ... ... ......
2.2.2 Spaces of Smooth Rational Curves . ... ..........
2.2.3 Spaces of Complete Conics . ... ...............
2.3 Luna-Vust Theory for Symmetric Varieties. . . . . . ... ... ..
2.3.1 Spherical Varieties . . . . ... ... ... 000000,
2.3.2 Symmetric Varieties. . . . ... ... ... .. . . 0.,
Chapter 3. Geometry of Conics on Adjoint Varieties
3.1 Conics on Adjoint Varieties . . . . .. ... ... ... ... ...,
3.1.1 The Case of Symplectic Lie Algebras . . . ... ... ....
3.1.2 The Case of Special Linear Lie Algebras ..........
3.2 Main Theorems . ... .. .. ... ittt eeneenn
3.3 Sphericality of Space of Twistor Conics . ... ... .........
3.4 Tangent Directions of Contact Conics . . ... ............
3.5 Classification of Borel Fixed Conics ... ... ............
Chapter 4. Colored Fans of Spaces of Conics
4.1 Colored Cones of Simple Embeddings . ... ... ..........
4.2 The Case of Orthogonal Lie Algebras . . ... ............

4.2.1 HighRank Cases. ... ... ... ... ...

1ii

iv

10
11
13
15
15
18

21
21
23
23
25
31
33
37



4.2.2 TheCase of Dy . . . v i i i i i i i it i i i i i it et i e e
4.23 The Caseof By . . . . . i i i i i ittt ittt et
4.3 The Case of Special Linear Lie Algebras

Chapter 5. Applications

5.1 Classical Descriptions . ... ... ... ... ... ... 0.,
5.1.1 Type A: Blow-up of the Product of Grassmannians
5.1.2 Type Gy: Cayley Grassmannian

5.2 Conjugacy Classes of Conics

5.3 Smoothness of Hilbert Schemes

5.4 Minimial Rational Curves on Hilbert Schemes

Acknowledgments in Korean

Curriculum Vitae in Korean

............

ii

52
02
92
52
23
60
64

77

78



2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
5.3

List of Tables

Information on Zg. . . . .. ...

Space of lines passing through o € Z; and its embedding into the contact hyperplane. . . .

Satake diagram and the restricted root system of Og. . . . .. .. ... ... L.
Colored cone of Cg®" in Q((Rp )¥). - - - oo
Colored fan of Hy”" in Q((Rp,)¥)- - - - - - oo oo
Colored fan of CoCy™ in Q((Rp )™). - -« oo o oo
B-stable planes in P(g) and their stabilizers. . . . .. ... ... ... .. ... ... ... ..
Isotropy groups of the closed G-orbits O in Hy and in CoCgy. . . . . . ... ... ... ...

Number of double cosets of Wpss g in Wpss for the parabolic Q c P*%. .. ... ... ...
Spherical roots and type of colors of Og. . . . . ... ... ... ... oL oo
VMRT D, of an Og-embedding Dy without color. . . . ... ... ... ... ... ....

iii

28
28
39
42



5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

List of Figures

Orbit structure of Hg for g=C, (r>2). . ... ... ... ... .. .. ... ......... 58
Orbit structure of Hg for g=Ao. . . . ... ... o 58
Orbit structure of Hy for g=A, (r>3). . .. ... ... .. ... . . ... ... ... 58
Orbit structure of Hy for g =B, (r>4)or D, (r>5). . ... ... ............... 58
Orbit structure of Hg for g=Bs. . .. ... .. ... .. ... . ... ... 58
Orbit structure of Hg for g=Dy. . . .. ... ... 59
Orbit structure of Hy for g=E, (r=6,7,8)or Fu. . ... ... ... ............. 59
Orbit structure of Hg for g=Ga. . . . .. ... .. . 59
Locus in Zy swept by conics parametrized by a minimal rational curve on Hy°".. . . . .. 69

iv



Chapter 1. Introduction

We are working over C, the field of complex numbers. Let g be a simple Lie algebra, and G the associated
simply connected Lie group. Then G naturally acts on g via the adjoint representation. Moreover, in
the projectivization P(g), there exists a unique closed G-orbit Zg, called the adjoint variety of g.

By its definition, the adjoint variety Zg c P(g) coincides with the projectivization of the minimal
nonzero nilpotent orbit in g. It is well-known that a nilpotent orbit O in g is equipped with a G-invariant
symplectic structure (the so-called Kirillov-Kostant-Souriau structure). Thus its projectivization Z := PO
admits a contact distribution, that is, a hyperplane subbundle D of the tangent bundle T'Z such that

the Lie bracket of vector fields induces a bundle morphism

2
A\D—TZ/D (quotient line bundle)

which is everywhere non-degenerate.

In particular, the adjoint variety Z; can be viewed as a rational homogeneous space equipped with an
invariant contact distribution. In fact, Boothby [4] shows that the adjoint varieties are the only rational
homogeneous spaces admitting invariant contact structures. For this reason, the adjoint varieties are
often called homogeneous contact manifolds. Moreover, the adjoint varieties are the only known examples
of Fano contact manifolds, and it has been conjectured that every Fano contact manifold is isomorphic
to one of the adjoint varieties (the so-called LeBrun-Salamon conjecture; see [2]).

On the other hand, since the adjoint variety Z; is a rational homogeneous space, it is covered a
large family of rational curves, i.e. non-constant images of P'. Then it is natural to study a connection
between the contact distribution of Z; and geometry of rational curves on Zy. For example, it is known
that if a rational curve on Z; is not tangent to the contact distribution, then its degree, with respect to
the embedding into P(g), must be at least 2.

Motivated by these facts, we study conics, i.e. rational curves of degree 2 on Zy c P(g), and their

parameter spaces. Before stating our main theorems, we recall related results.

1.1 State of the Art

1.1.1 Rational Curves on Rational Homogeneous Spaces

As noted before, the adjoint variety Z, contains a lot of rational curves. Among them, geometry of
lines, i.e. rational curves of degree 1, is well-understood. Namely, Hwang [15] proves that if Z ¢ PN and
¢ PT*PY, then tangent directions of lines passing through a point o € Z4 form a homogeneous Legendrian
submanifold of P(D,) where D is the contact distribution of Zy. Using this, Hwang shows that under
the same assumption, Zy is rigid under Fano deformation.

More generally, Landsberg and Manivel [23] study linear subspaces on rational homogeneous spaces.
Indeed, Landsberg and Manivel give a recipe to construct parameter spaces of linear subspaces on rational
homogeneous spaces. (Such a parameter space is called a Fano variety/scheme in literature, while we do
not use this terminology to avoid a confusion with a manifold whose anti-canonical bundle is ample.) In

particular, the description of the space of lines on the adjoint variety Z, is recovered.



Beyond lines, geometry of rational curves of higher degree is more complicated. The main difficulty is
that smooth rational curves of higher degree can degenerate to singular curves with several components.
That is, the space of smooth rational curves is often non-compact, hence may allow various compactifica-
tions. For instance, one can compactify it using the Chow scheme (parametrizing algebraic cycles), the
Hilbert scheme (parametrizing closed subschemes), the Kontsevich moduli space (parametrizing stable
maps), and the Simpson’s moduli space of semi-stable sheaves (see [10, §1] for the precise definitions).
Furthermore, in the case of conics, one can consider the space of complete conics (parametrizing degener-
ations of pairs of a smooth conic and its dual conic), which is a classical object in enumerative geometry
(see [42]).

The study on compactified spaces of rational curves is an active research area. An important result
is that on a rational homogeneous space X, if we choose a homology class a € Ho(X, Z), then the space of
smooth rational curves representing « is irreducible, whenever it is nonempty. This statement is verified
by several authors, including Kim and Pandharipande [18], Thomsen [40] and Perrin [34]. In particular,
if X is a rational homogeneous space of Picard number 1, then the space of smooth rational curves of
fixed degree on X is irreducible (possibly empty).

In the case where the degree of rational curves is at most 3, Chung, Kiem and Hong [10] construct
explicit birational morphisms relating three compactifications introduced above: the Hilbert compact-
ification, the Kontsevich compactification, and the Simpson compactification. Thus once we obtain a
description of one of them, a description of the others follows. For example, for the space of conics,
after taking the normalizations, the Hilbert compactification and the Kontsevich compactification can
be constructed as blow-downs of a common smooth variety, where the blow-up loci are specified in [10,
Theorem 3.7].

1.1.2 Family of Conics Parametrized by Riemannian Symmetric Spaces

After Boothby’s characterization [4], Wolf [44] proves that the adjoint variety Zy admits a foliation
by smooth conics, whose leaf space is a certain Riemannian symmetric space. In this subsection, we
recall Wolf’s theorem and its generalization. Though the results in this subsection would not be used in
this article, they shall explain a connection between conics on Zy and the theory of spherical varieties
(Subsection 1.1.3).

More precisely, Wolf [44] obtains a bijective correspondence between the adjoint varieties and Wolf
spaces. Here, a Wolf space is a Riemannian symmetric space which is quaternion-Kdhler (QK for short;
see [3, Chapter 14] for the definition) and of positive curvature. Wolf spaces are real analytic manifolds,
but not necessarily complex manifolds.

Wolf’s correspondence [44] says that for each adjoint variety Zg, there is a Wolf space My equipped
with a real analytic fibration Z; — My whose fibers are smooth conics transverse to the contact distribu-
tion and have normal bundles ~ Op: (1)69(dim Zs=1) . Conversely, every Wolf space arises in this way. (In
fact, Wolf also obtains a similar correspondence between certain homogeneous domains in the adjoint
varieties and QK symmetric spaces of negative curvature; see [44, Theorem 6.7].)

Salamon [38] generalizes Wolf’s correspondence to arbitrary QK manifolds. For each QK manifold
M, Salamon constructs a complex manifold Z equipped with a contact distribution D and a fibration
Z — M generalizing Wolf’s result: the fibers are smooth rational curves transverse to D and have
normal bundles = Op:(1)®(d™Z-1) " Fyurthermore, Salamon’s construction shows that there exists an
anti-holomorphic involution 6 : Z — Z preserving D and each fiber of Z — M. As a consequence, M,

parametrizing a family of #-invariant rational curves, can be considered as a totally real submanifold of



the space of rational curves on Z with normal bundles ~ Op: (1)®(d™ %=1 Nowadays, Z is called the
twistor space of the QK manifold M. The fibers of Z — M are often called twistor lines, however in this
article, to emphasize their T'Z/D-degree (= 2), we call them twistor conics. For these results, we refer to
38] and [25, §1].

The other direction of Wolf’s correspondence is generalized by LeBrun [25]. To state the result, we
need two data: a complex contact manifold (Z, D) and a fixed-point-free anti-holomorphic involution 6 :
7 — Z preserving D. Under this setting, LeBrun shows that if Y is the set of #-invariant smooth rational
curves C ¢ Z transverse to D and with normal bundles = Op1 (1)®dmZ=1 then Y is a QK manifold
(possibly pseudo-Riemannian; see [25, Theorem 1.3]). Using this result, LeBrun [25, §2] constructs new
examples of QK manifolds.

Finally, based on LeBrun’s theorem, Dufour [12] provides a recipe of QK manifolds, starting from
parabolic geometries modeled on the G-adjoint variety Zg,, and then describes the resulting QK metrics
explicitly. In the proof, the study on deformations of double lines (which are singular conics) on the

Go-adjoint variety Zg, plays an important role. See [12, Théorémes 108, 126] for details.

1.1.3 Luna-Vust Theory for Spherical Varieties

As explained in Subsection 1.1.2, the adjoint variety Zg admits a real analytic family of smooth
conics parameterized by a Riemannian symmetric space My. TFurthermore, My can be viewed as a
totally real submanifold of the space of smooth conics on Zy. From these facts, one can expect that the
space of smooth conics may contain the complezification of My, i.e. a homogeneous space (Gg)®/(Kg)®
where Gr and Ky are compact real Lie groups such that My ~ Gr/Kgr. This observation leads us
to the theory of spherical varieties, since the homogeneous space (GR)C/(KR)C is a symmetric variety
(Definition 2.3.9), hence in particular a spherical variety.

Let us briefly introduce the notion of spherical varieties and their embedding theory. For a connected
reductive group G’, a normal G'-variety is called (G’-)spherical if a Borel subgroup of G’ has an open
orbit. The class of spherical varieties includes a lot of classical examples of almost homogeneous varieties:
toric varieties, rational homogeneous spaces, symmetric varieties, etc. Observe that by the definition, a
G'-spherical variety X contains an open G’-orbit, say O. In this case, we say that X is an O-embedding.

Recently, there has been a huge progress in the classification of spherical varieties. The program
consists of two steps: (1) given a homogeneous spherical variety O, classify all O-embeddings, and (2)
classify homogeneous spherical varieties. The first step (1) is completed by Luna and Vust [27], while
the second step (2) is achieved more recently, contributed by several researchers (including Bravi, Cupit-
Foutou, Losev, Luna and Pezzini; we refer to [41, §30.11-12] and the references therein). In this article,
we are mainly interested in the classification of a fixed homogeneous spherical variety, so let us summarize
the result of Luna and Vust on the first step (1).

In [27], Luna and Vust show that given a homogeneous spherical variety O, there is a bijective
correspondence between O-embeddings and certain combinatorial objects, called colored fans (modulo
isomorphisms). A colored fan is a finite collection of pairs of a polyhedral cone and a finite set (see
Definition 2.3.2), and so O-embeddings are classified in terms of finite combinatorial data. For example,
if G’ is a torus and G’ = O, then O-embeddings are exactly toric varieties, and the colored fan of a toric
variety can be identified with the associated fan, which appears in the standard theory of toric varieties
([31]). In fact, roughly, one can say that the colored fan of a spherical variety plays a role of the fan of a

toric variety. For example, for spherical varieties, we have an orbit-cone correspondence (Lemma 2.3.4),



and a smoothness criterion ([13]) in terms of the colored fans. More details on Luna-Vust theory can be

found in Section 2.3.

1.2 Main Results and Structure of the Article

Now we explain the content of this article. The precise statements for the main theorems are given
in Section 3.2, and in this section, we present them only in a simplified form. Recall that g is a simple Lie
algebra, and G is the associated simply connected Lie group. We are mainly interested in the irreducible
component of the space of smooth conics on Zg, parametrizing twistor conics; denote it by Ry, (Zg). In
fact, if g is not of type A, then R4, (Zy) coincides with the whole space of smooth conics, see Section
3.1. For the other components in the case where g is of type A, the situation becomes simpler, and we
discuss them in Subsection 3.1.2.

In Chapter 2, we review known results which are necessary in our study: the contact distribution on
the adjoint variety Zy (Section 2.1), the construction of the spaces of smooth rational curves on rational
homogeneous spaces (Section 2.2), and Luna-Vust theory for symmetric varieties (Section 2.3). Namely,
we introduce three compactifications of Ry, (Zy): the (semi-normalized) Hilbert scheme Hy, the Chow
scheme Cy, and the space CoCy of complete conics. These are projective compactifications of Re, (Zy),

and their normalizations are related via G-equivariant birational morphisms
nor nor nor
CoCy" - H;" - C”".

In Chapter 3, we study smooth conics on Zy and their deformations. The following are our first

main theorem:

Main Theorem 1 (Theorem 3.2.1). Twistor conics on Zg, i.e. smooth conics transverse to the contact
structure, form an open G-orbit Oy in Rs,(Zy), which is isomorphic to a homogeneous G-symmetric

variety.

Its proof is given in Section 3.3. In Chapter 3, we also study smooth conics passing through a given

point, and prove the following theorem:

Main Theorem 2 (Theorem 3.3.4, Corollary 3.4.2). Let o€ Zy be a point, v e T,Zy a nonzero tangent
vector, and D, c T, Zy the contact hyperplane at o.

1. Ifv ¢ D,, then there exists a unique twistor conic tangent to v. That is, the space of twistor conics
passing through o is identified with P(T,Z4) \P(D,) ~ C4mZa=1,

2. If g is not of type C and [v] is a general element of P(D,), then there is no smooth conic tangent

to v.

(If g is of type C, then there is a smooth conic in every direction; see Subsection 3.1.1.) The first
statement is proven in Section 3.3, and the second is proven in Section 3.4. Here, the meaning of general
element of P(D,) in the last statement is specified in Proposition 3.4.1. In the last part of this chapter
(Section 3.5), we classify B-fixed points in the compactifications Cy, Hy and CoCy for a Borel subgroup
B of G, which represent the ‘most singular’ deformations of smooth conics on Zg.

Chapter 4 is the core of this article. From this chapter, we regard the compactifications Cy*", Hy*"

and COC;LOT as spherical varieties, and then compute their colored fans as Og-embeddings:



Main Theorem 3 (Theorem 3.2.2). The normalizations C3°", Hy®" and CoCy°" are G-symmetric

varieties, and their colored fans are given in Tables 3.2-3.4.

Chapter 4 is devoted to the proof of the theorem. The main ingredients of the proof are (1) Luna-Vust
theory for symmetric varieties (Sections 2.3, 3.2), and (2) the classification of B-fixed points (Section
3.5). Using these, we compute the colored fan of each compactification case by case.

In the final Chapter 5, we introduce several applications of the main theorems. Let us introduce

some consequences:

o A classification of G-conjugacy classes of conics on Zg (Section 5.2). For example, when g is of
exceptional type, we show that G-conjugacy classes of conics can be visualized as the following

diagrams:

(Twistor Conics)

/ \

(Contact Conics) (Reducible Conics)
(Contact Conics) (Reducible Conics) (Double Lines)
(Reducible Conics) (Double Lines)

\ /

(Double Lines)
ifgis B, (r=6,7,8) or Fy, and

(Twistor Conics)

(Reducible Conics)

(Double Lines)

if g = G2. Here, a contact conic means a smooth conic tangent to the contact distribution D
(Section 3.1), and we draw an edge whenever conics in the upper class can degenerate to conics in
the lower class (for the precise definition and similar diagrams for other g, see Figures 5.1-5.8 and
the discussion after Theorem 5.2.4). In particular, we conclude that in the Ga-adjoint variety Zg,,

every smooth conic is transverse to the contact distribution.

 Smoothness of the normalized Hilbert scheme Hi°" (Corollary 5.3.1). This result also follows from

[10, Proposition 3.6], and we shall give a different proof using spherical geometry.

o A description of the variety of minimal rational tangents (VMRT for short; Definition 5.4.1) of

H{°" in terms of lines and conics on Z; (Section 5.4 and Figure 5.9).

Remark 1.2.1. A part of this article has appeared in the author’s preprint [22]. There are several

changes in this article, and the main differences are as follows:



The application to VMRT of Hi*" is new. The author would like to thank his Ph.D. advisor Jun-
Muk Hwang for sharing the observation in Remark 5.4.8, and for suggesting finding its geometric

interpretation.

This article includes the study on CoCy, the space of complete conics, while it is not treated in
[22]. The author is very grateful to Michel Brion for the suggestion to study the space of complete

conics and for helpful discussions.

This article covers every simple Lie algebra g, while in [22], g is assumed to be not of type A or C.
The author would like to thank Nicolas Perrin for pointing out his misunderstanding in the case
of type A. The author is also grateful to DongSeon Hwang for encouraging him to consider all the

cases.

The presentation of the proofs of the main theorems is improved. Especially, the computation of
the colored fans in the case where g = B3 is simplified. The author would like to thank Jaehyun

Hong for valuable comments and discussions.



Chapter 2. Preliminaries

In this chapter, we explain our notation and review several known facts. First of all, our base field
is C, the field of complex numbers, and every scheme is assumed to be locally of finite type over C. A
variety means an integral separated scheme of finite type over C, and a point in a scheme means a closed

point. For a vector space V, P(V') :=V — {0}/C* denotes the space of 1-dimensional subspaces of V.

2.1 Adjoint Variety and Contact Distribution

Our main reference on Lie theory is [32]. Let g be a semi-simple Lie algebra (until we define the
adjoint variety). Let G be the simply connected Lie group associated to the Lie algebra g. Choose a
maximal torus T in G, and a Borel subgroup B containing 7. We denote the Lie algebras of T" and B by
t and b, respectively. The set of roots and the set of simple roots are denoted by R and S, respectively.
When g is simple, we use the numbering S = {a, ..., Grankg} Of simple roots given in [32, Reference
Chapter, Table 1] (which is different from the one in [6], especially for exceptional Lie algebras other than
G4). For each root « € R, g, means the root space corresponding to « so that the root decomposition of
g is given by

g=t® @D ga-
aeR

The character group of T is denoted by x(T'), and each character A € x(T') is regarded as a linear
functional on t. In this notation, if H € t, then the value of the character corresponding to A at exp(H)
is equal to e*#). The bracket (, ) means the Killing form on g, and the dual of a root « € R is denoted
by H, € t. More precisely, H, is the element of t satisfying (H,, H) = a(H) for all H € t. The pairing
of two roots o and f is defined as («, 8) := (H,, Hg), which extends to an inner product on x(7) ®z R.
The natural pairing of x(7") and its dual x,(T) is also denoted by (A, u) for A e x(T') and p € x.(T') so
that the Cartan integer is given by («|8) = (a, BY) for o, § € R where 3 is the coroot corresponding
to 8. A nonzero vector in g, for some a € R is called a root vector, which is often denoted by E,. If
a collection {E, € g, : a € R} of root vectors is given, we define N, g for o, § € R to be the complex
number satisfying

[Ea; Eg] = Nog - Eass
ifa+PBeR, and Ny g=0if a+ 5 ¢R.
For a nonempty subset I c S, we denote by P; the parabolic subgroup containing B generated by
the complement S \ I of I. That is, the Lie algebra of P; is

pr=be ©® 9-a
acRTnspan(S~\I)

where R* is the set of all positive roots. The opposite parabolic subgroup of P is denoted by P;. We
define W = W¢ to be the Weyl group of (G, T'), and W¢, p, means the subgroup of W generated by
reflections with respect to aw€ S\ I so that Pr=B-Wg p, - B.

From now on, assume that g be a simple Lie algebra. Then the adjoint representation is irreducible,
and its highest weight is the highest root of g, denoted by p € R (with respect to the Borel subgroup B).
Thus P(g) contains the unique closed G-orbit, which is the G-orbit of long root vectors. This projective

subvariety of P(g) is called the adjoint variety and denoted by Z,. By its construction, Zy is isomorphic



’ g ‘ Extended Dynkin diagram of g ‘ N(p) ‘ Classical description of Z ‘ dim Z ‘ n ‘

Cr
( > 1) -pa {al} ]P2T71 2r—1 r—1
r> 1 [e23
A, -
( >2) A {041, aT} F117T‘(CT+1) 2r -1 r—1
T2
a ar
B, -p
(r>3) pe- —e—ee {az} 0G(2, C?+1) 4r-5 | 2r-3
T2 a [’
Dr —-P Qi
(r>4) > '< {az} 0G(2, C*) dr -7 | 2r-4
T2 (e %1 .
ap Qs
Eg {as) - 21 10
ag
-p
[e5} Qg —p
Er MR A {6} - 33 16
ar
—paq %
By MR (i {a1} - 57 28
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G2 a ag —p {042} - 5 2

Table 2.1: Information on Zj.

to a rational homogeneous space G/P where o := [g,] € P(g) and P is the isotropy group of o in G, i.e.

P :=Stabg(0). The isotropy group P is a parabolic subgroup containing B and its Lie algebra is

p=te @D ga=bn
aeR, (a, p)=0
where N(p) := {a; € S: (o, p) # 0}. In other words, N(p) consists of simple roots which are neighbors of
—p in the extended Dynkin diagram of g. Using this description, one can easily show that dim(Z,) = 2n+1
for some n € Zso. See Table 2.1 for the extended Dynkin diagram of Z; and the value of n. In the same
table, we provide a description of Z; in the case where g is of classical type. Here, Fl; .(C"™*!) is
the partial flag variety (parametrizing pairs of lines and hyperplanes in C"*1), and OG(2, CV) is the
orthogonal Grassmannian (parametrizing isotropic 2-planes in CV).

The adjoint variety Z; comes with a hyperplane distribution described as follows. Consider a

decomposition
g=g299-19009 91 D g2
where
go=t® P ga, gu1i= Q) Ja; 042 = Oup.
aeR:(a, p)=0 aeREN{xp}i(a, p)#0



It makes g a graded Lie algebra, i.e. [g;, g;] € gi+; where gi :=0 for all k e Z\ {0, £1, £2}. Let us write
gl = @D;»;9i- Then p = g%, and each g’ is a P-module. In the tangent space T,Zy of Zy at o, which
is identified with g/p as a P-module, consider a hyperplane D, identified with g=!/p(c g/p). Since D,
is P-invariant, the G-action on Z; induces a well-defined G-invariant vector subbundle D ~ G xp D, of
TZy~Gxp(g/p) extending D,. This hyperplane distribution D is called the contact distribution on the

adjoint variety.

Remark 2.1.1. There is a notion of contact distribution on a complex manifold, and we refer to [24].
By the result of Boothby [4], the adjoint varieties can be characterized as rational homogeneous spaces

equipped with invariant contact distributions.

The quotient line bundle T'Zy/ D, called the contact line bundle, can be described as follows. Consider
the tautological line bundle Op(yy(~1) on P(g). Its restriction on Zg is a G-homogeneous line bundle,
isomorphic to Gxpg,. Observe that the Killing form of g identifies g/g™" and the dual of g5 as P-modules.

Therefore we have
Op()(D)z, =G xp (g/g™") = TZ,/D.

Next, we introduce another description of the gradation g = EBE,L?Q gm. For a simple root «; € S and

a root « € R, let m;(a) be the coefficient of «; in a.

o If g is not of type A, then there is exactly one simple root, say «;,, which is not orthogonal to the
highest root p (Table 2.1). In this case,

go=te @D  ga Im-= @  gm Ym#O.

aeRmj (a)=0 aeRmj, (a)=m

Moreover, we have
2=(plp) =mj, (p) - {ajo | p) = 2- (o [ ),
hence for a € R,
(alp) =mj, (@) - (g, | p) = mj, ().

Note that aj, is a long root if and only if g is not of type C.

o Ifg=A, (r>2), then N(p) ={a1, a,}, and

go=t® & 9oy Om = ) Om, Ym#0.

aeR:my () +m,(a)=0 acRmi(a)+m,(a)=m

As (a1 |p) = {ar|p) =1, for a € R, we have
(alp) =mi(a)+m(a).
To summarize, for arbitrary g, we have

go=te® @ Jay  9m = @ Im, vm%(l
aeR:(a|p)=0 aeR:(a|p)=m

2.2 Parameter Spaces of Rational Curves

Our main goal is to understand spaces of conics on the adjoint varieties. For this purpose, we recall

several parameter spaces of subobjects of a given projective variety.



2.2.1 Hilbert Schemes and Chow Schemes

Let us recall the relation between the Hilbert scheme and the Chow scheme. Our main reference
is [20, Ch. I]. Consider a projective variety X equipped with an ample line bundle £. For each
polynomial p(m) € Q[m], there is a projective scheme Hilb,,,,) (X, £), called the Hilbert scheme, which
is the moduli space of closed subschemes of X with Hilbert polynomial p(m) with respect to £. More
precisely, following [20, Theorem 1.1.4], Hilby,(,,)(X, £) is defined to be the scheme representing the

functor

{schemes} — {sets}

T closed subschemes of X x T which are flat, proper over T
and whose Hilbert polynomials over T" with respect to £ are p(m) '

We also write Hilb(X) = Ly(m)eqpm] Hilbp(m) (X, £) (disjoint union), and call it the Hilbert scheme.
In particular, points of Hilb(X) (Hilby(,)(X, £), respectively) correspond to closed subschemes of X
(which have Hilbert polynomial p(m) with respect to L, respectively). One advantage of using the

Hilbert scheme is that its infinitesimal structure is well-understood. For example:

Theorem 2.2.1 ([20, Theorem 1.2.8 and Proposition 1.2.14]). Let X be a projective variety, and V c X

a closed subscheme with its ideal sheaf Iy, . Then there is a natural isomorphism
T Hilb(X) ~ Homo,, (Zv |7, Ov)

where the left hand side means the Zariski tangent space at the point [V']. If furthermore X is smooth,
V is a local complete intersection, and H*(V, Nyx) =0 where Ny, x is the dual of the conormal sheaf

Ty |TE (which is locally free), then Hilb(X) is smooth at [V] and its tangent space is given by
Tr Hilb(X) =~ H*(V, Ny x).

On the other hand, for d € Zyg and d' € Z., there is another projective scheme Chowy 4 (X, L),
called the Chow scheme, which is the moduli space of non-negative proper algebraic d-cycles of £-degree d’
in X. As before, following [20, Theorem 1.3.21], Chowy, 4 (X, £) is defined to be the scheme representing

the functor

{semi-normal schemes} — {sets}

well-defined families of non-negative, proper, algebraic cycles
T > of dimension d and degree d’ of X x T'/T
(see [20, Definition 1.3.10])

Here, semi-normality is defined as follows:
Definition 2.2.2 ([20, §1.7.2], [21, §10.2]). Let X be a reduced scheme.
1. The semi-normalization of X is a scheme X*" satisfying the following conditions:

(a) X*" is a reduced scheme equipped with a bijective morphism X*" - X;

(b) The normalization X™°" — X factors through the morphism X*" - X, i.e. X" - X*" - X;

and

(¢) 'Y is a scheme satisfying the conditions (a) and (b), then there exists a unique factorization
X" Y > X.
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2. X is called semi-normal if it is isomorphic to its semi-normalization X*™.

There is a natural morphism from the semi-normalized Hilbert scheme to the Chow scheme, which
sends a subscheme to its fundamental cycle. Here, for a closed subscheme V c X of dimension d, the
fundamental cycle of V is an effective d-cycle on X defined as

FC(V):= > length(O,, v)-[V;]
v;:dim V;=d

where v; runs over the generic points of V and Vj is the corresponding irreducible component of V"¢?
([20, Definition 1.3.1.3]).

Theorem 2.2.3 ([20, Theorems 1.6.6, 1.7.3.1]). For a projective variety X with an ample line bundle L
and a polynomial p(m) € Q[m] of degree d, F'C induces a morphism

FC: Hilby ¢,y (X, £) » d’LL Chowg,ar(X, L), [V]~ FC(V)

satisfying the following condition: For a closed subscheme V c X with Hilbert polynomial p(m) with
respect to L, FC is a local isomorphism near the point [V] € Hilb;?m)(X, L) if V is reduced, has pure
dimension and satisfies Serre’s condition Sy. Here, Hilby(,, (X, L) is the semi-normalization of the
reduced scheme (Hilb, () (X, £))".

Note that since the semi-normalization morphism is bijective, we may identify points in the Hilbert

scheme and points in its semi-normalization.

2.2.2 Spaces of Smooth Rational Curves

From now on, we focus on parameter spaces of rational curves. Suppose that X is a projective
variety, equipped with an ample line bundle £. A rational curve on X means the image of a non-constant
morphism P! - X. Then for each d € Z.g, there exists a quasi-projective variety parametrizing rational
curves of £-degree d on X, denoted by RatCurvesy(X, £). Roughly, RatCurvesy(X, £) is defined as
the normalization of the locus of the fundamental cycles of rational curves in Chowy 4(X, £). See [20,
Definition—Proposition I1.2.11] for details. Alternatively, RatCurves(X) := [I45; RatCurvesq(X, £) can
be constructed as the Aut(P')(= PGLz)-quotient of Homyy (P!, X), the normalization of the space
Homy;,- (P, X) of morphisms P! — X which are birational onto their images ([20, Theorem I1.2.15]).

Now assume that X is smooth, and consider a non-constant morphism f : P! - X. Following [20,

Definition I1.3.1], for a closed subscheme B c P! and its ideal Zg c Op1, we say that f is free over B if
HY(PY, f*TX ®Zp)=0and f*TX ® Ip is generated by global sections. Recall that by Grothendieck’s
theorem, f*TX is split into the direct sum of line bundles, say f*T'X ~ EB?zirl”X Op1 (a;) for some integers
a; 2 -+ > agimx- Thus if B=g@ (i.e. Zp = Op1), then f is free over B if and only if agim x > 0. In this
case, we simply say that f is free. On the other hand, if B is a point (so that Zg ~ Op:(-1)), then f is
free over B if and only if aqjm x > 1.
Theorem 2.2.4 ([20, Theorem 11.3.11]). Let X be a smooth projective variety, and B c P! a finite
subscheme of length < 2, possibly empty. For a morphism g: B — X, there exist countably many closed
subvarieties V;(B, g) ¢ X such that if f: P! - X is a non-constant morphism satisfying f|g = g and
im(f) ¢ U; Vi(B, g), then f is free over g.

In other words, one can say that a non-constant morphism P! - X whose image passes through a

very general point is free. In particular, if X is homogeneous under the action of Aut(X), then every

non-constant morphism P! - X is free.
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Corollary 2.2.5. Assume that X is a projective variety which is homogeneous under the action of
Aut(X). Let Hilb(X) be the Hilbert scheme of X, and R(X) c Hilb(X) be the locus of smooth rational
curves on X. Then R(X) is an open subscheme of Hilb(X), and it is smooth.

Proof. R(X) is an open subscheme of Hilb(X) since being smooth is an open condition in a proper and
flat family. Thus it is enough to show that if C'c X is a smooth rational curve, then Hilb(X) is smooth
at the point [C]. In fact, since X is homogeneous, the embedding P! 5 € c X is a free morphism by
Theorem 2.2.4. It means that T'X|c is globally generated, hence the normal bundle N¢,x is isomorphic
to @M X O (a;) for some integers a; > 0. In particular, H'(C, N¢yx) =0, and so [C] is a smooth point
by Theorem 2.2.1. O

From now on, assume that X is a rational homogeneous space, i.e. X is homogeneous under an
action of a reductive group. By Corollary 2.2.5, the space R(X) of smooth rational curves is smooth. By
its construction, R(X) = Lp(m)ecq(m] Rp(m) (X, £) where L is an ample line bundle and R, (X, £) :=
R(X) n Hilby(,,) (X, £). Recall that the Picard group Pic(X) is isomorphic to H*(X, Z), and the
(co)homology groups H?(X, Z) and Hy(X, Z) are lattices of finite rank which are dual to each other. In
other words, a homology class & € Ho(X, Z) is uniquely determined by deg (&), YM € Pic(X). Thus

any two members of R,,(,,) (X, L) represent the same homology class, hence given & € Hy (X, Z),
Rs(X) :={[C] e R(X): C represents & in Hao(X, Z)}
is a well-defined open subscheme of R(X).

Theorem 2.2.6 ([18], [40], [34]). For a rational homogeneous space X and a homology class & €
Hy(X, Z), Rs(X) is irreducible whenever it is nonempty. That is, Ry (X) is a smooth quasi-projective

variety.

Finally, we review the description of spaces of lines on rational homogeneous spaces, following [23,
Section 4]. Let X = G/Pr be a rational homogeneous space, G being a simply connected simple Lie
group and nonempty I ¢ S. Then Pic(X) ~ H?(X, Z) is isomorphic to the sublattice of the weight
lattice, generated by the fundamental weights corresponding to elements of I. Indeed, if o; € I and w;
is the corresponding fundamental weight, then the line bundle associated to w; can be obtained as the

pull-back of Op(y;)(1) via the morphism
X =G/P; - G|P,, cP(V;)

where V; is the fundamental representation associated to w;. Therefore the line bundle £; defined by

Y aser wi can be obtained as the pull-back of Opg_ _, v;)(1) via

01: X =G|P; > [] G/Pa, ~ HP(%)%P(@ V)

a;el a;el agel

In fact, ¢y is an embedding, i.e. Ly is very ample. If C' c X is a L£;-line, i.e. a rational curve of L;-degree 1,
then there exists «; € I such that the homology class of C'is o) € Hy(X, Z). Here, Ho(X, Z) is identified
with the lattice generated by the coroots corresponding to elements of I. Therefore [I,,c; Rav(X)

parametrizes Lj-lines on X.

Theorem 2.2.7 ([23, Theorem 4.3 and Theorem 4.8]). Let X = G/P; be a rational homogeneous space,
G being a simply connected simple Lie group and nonempty I ¢ S. Assume that o; € I is long (as a root),
and let N(oy) :={oj € S:{ay, aj) <0}. Then the following hold.
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1. G acts transitively on Ry (X), and R,y (X) = G/P(1<{a;})uN(ar)-
2. For the base point o:=e- Pr € X, Pr acts transitively on

Cot ={[ToCl e P(T,X) : [C] € Ryy(X) such that o€ C}.

Note that C$¢ is projective, hence for the standard Levi subgroup L; of P;, C& ~ L;/(L;n Pr).

As a corollary, let us describe the space of lines on the adjoint variety Zy; c P(g) for each simple Lie
algebra g not of type C. (In fact, if g is of type C, then since p = 2wy, Zy c P(g) is the second Veronese
embedding of the projective space, hence Z; does not contain any line on P(g).) If g is not of type C,
we have p = ¥, cn(pwi (Table 2.1), which means that Op(g)(1)|z, =~ Ln(,). That is, lines on Z; with
respect to the embedding into P(g) are exactly Ly (,)-lines.

o If g is not of type A or C, then N(p) = {a;,} for some «j, € S, hence the space of lines on
Zg c P(g) is isomorphic to G/PN(ajO). On the other hand, by [23, Proposition 2.4], D, c T, Z; is
an irreducible P-module. By Theorem 2.2.7, C, = Co”® is the highest weight orbit in P(D,). (This

description can be also found in [15, Proposition 5].)

o If g=A, (r>2), then the space of lines has two connected components R,y (X) uRay(X) where

Roy(X) 2 G/Puya,, and Ray(X) = G/P,

1, Qp-1"

Moreover, we have D, = D2 @ D% as P-modules where under the identification D, ~ g™'/p,

Dgl = ( @ I-(ar1+-+ay) @P) /pa and DST = ( @ I (ai++ar) ®p)/p

1<i<r 1<i<r

By [23, §2.3], each of D' and DSr is an irreducible P-module. By Theorem 2.2.7, for each
i=1,7r, C¥ is the highest weight orbit in P(Dg") for some i’ = 1, r. In fact, for the projection
Zg = G|Pay,a, = G|Pa,, DS is the tangent space of a fiber, hence the lines tangent to DS are
contained in the fiber. Therefore C$¢ is the highest weight orbit in P(D%%) for i =1, r.

The space of lines passing through o on Z; is described in Table 2.2. Here, v} (P') means the kth
Veronese embedding of P!. Observe that the dimension of the space of lines through o is always equal

ton-—1.

2.2.3 Spaces of Complete Conics

In contrast to the case of lines, the spaces of smooth rational curves of higher degree are not
projective. In this subsection, we consider smooth conics, i.e. smooth rational curves of degree 2, and
introduce the notion of the space of complete conics, which is a compactification of the space of smooth
conics.

First, we recall the construction of the space of complete conics on P2. Let V' be a vector space of
dimension 3. Then P(Sym?®V*), isomorphic to P®, parametrizes hyperquadrics on P(V). Indeed, with
respect to the natural PGL(V )-action, P(Sym?V*) consists of three orbits:

o The locus of smooth conics. This is an open PGL(V')-orbit, isomorphic to PGL(V')/PO(V'). Here,
PO(V):=0(V)/ +id denotes the image of the orthogonal group O(V') in PGL(V).

e The locus of reducible conics, i.e. unions of two lines. This orbit is of codimension 1, but it is not
a closed PGL(V)-orbit.
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’ g ‘ Description of |y,en(p) Co' € P(D,) ‘

A, (r>2) | P72uP 2 (disjoint linear subspaces)
B, (r>4) P! x Q2" (Segre)
D, (r=5) P! x Q%% (Segre)
Bs P! x v5(P!) (Segre)
D, P! x P! x P! (Segre)
Es Gr(3, 6) (Plicker)
E; OG(6, 12) (Plicker)
Es Er/P; (minimal embedding)
F, LG(3, 6) (minimal embedding)
Gs v3(P1)

Table 2.2: Space of lines passing through o € Z; and its embedding into the contact hyperplane.

e The locus of double lines, i.e. non-reduced hyperquadrics. This is a unique closed PGL(V')-orbit,

isomorphic to Gr(2, V') (of codimension 3).

Then the space of complete conics on P(V') is defined to be the blow-up of P(Sym?V*) along the orbit
of double lines. We denote it by CoC(P(V)).

For arbitrary projective subvariety X c PV, N > 2, we recall the following well-known fact:

Proposition 2.2.8 ([30, Remark 4.4.(i)]). Let C c PV be a closed subscheme with Hilbert polynomial
2m+1. Then there exists a unique plane in P(g) which contains C' as a closed subscheme. In particular,

the scheme C' is isomorphic to a hyperquadric on a plane.
Definition 2.2.9. Let X c PV be a projective subvariety.
1. A closed subscheme C c X is called a conic if its Hilbert polynomial in PV is equal to 2m + 1.

2. A conic C' c X is called a reducible conic (a double line, respectively) if C' is the union of two

distinct lines (C' is non-reduced, respectively).

Let us write PV = P(W) for a vector space W of dimension N + 1. Choose a 3-dimensional subspace
V ¢ W so that Gr(3, W) =~ PGL(W)/Stabpgrw)(V). By Proposition 2.2.8, the Hilbert scheme of
conics on P(W) is given by

Hilbgm 1 (P(W), Opawy(1)) 2 PGL(W) XStabpe oy (v) P(Sym?V*),

a homogeneous fiber bundle over Gr(3, W) with fiber ~ P(Sym?V*). Then we define the space of complete
conics on P(W) as
CoC(B(W)) = PGLW) Xsab sy (v COC(P(V)).

By its definition, CoC(IP(W)) contains the space of smooth conics (and reducible conics) on P(WW).
Thus we may define the space of complete conics on X (c P(W)) as

CoC(X, Op(w)(1)|x) := {smooth conics on X c P(W)} c CoC(P(W)).
Observe that by the definitions, we have a Stabpgr,w)(V)-equivariant morphism (the blowing-up)

CoC(P(V)) - P(Sym?V*),
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which induces a PGL(W)-equivariant birational morphism
CoC(P(W)) - Hilbgp,+1 (P(W), Opewy(1)).
This is an isomorphism over Hilbgy,+1(P(W'), Op(wy (1)) \ {double lines}. Thus it induces a morphism
CH : CoC(X, Opw)(1)|x) — {smooth conics} ¢ (Hilbgm.1 (X, Opw)(1)]x))"
which is an isomorphism off the locus of double lines.

Remark 2.2.10. 1. Alternatively, the space CoC(P(V)) of complete conics on the plane P(V')

(dimV = 3) can be constructed as the closure of
{([C], [C¥]) : C c P(V) smooth conics} ¢ P(Sym*V*) x P(Sym?V').

Here, for a smooth conic C' c P(V), CV c P(V*) is the dual hypersurface, i.e. the set of points
corresponding to lines tangent to C' (and it is known that CV is again a smooth conic). In this
construction, the defining equation of CoC(P(V)) can be described as follows. First, choose a basis
of V so that P(Sym?V*) is identified with the projectivization of the set M of 3 x 3 symmetric
matrices. Similarly, its dual basis induces the identification between P(Sym?V’) and PMs. Then
CoC(P(V)) can be identified with the set of ([M;], [Mz2]) € PM3 x PMj3 such that M; - M is a
scalar matrix (possibly zero). See [42, §5] and [41, Example 17.12].

2. The space CoC(PY) of complete conics on PV (N > 2) is a wonderful variety. Here, for a connected

reductive group G’, a smooth projective G'-variety W is called wonderful if

(a) W contains an open G’-orbit, and its complement is the union of prime divisors W;, 1 <i<r
such that each W, is smooth and W; and W intersect transversally for all ¢ # j; and
(b) For arbitrary @ # I c {1, ..., r},

AWisUW;

iel JEI

is a single G’-orbit.

Then CoC(PY) is a wonderful PG Ly ;-variety with r = 2. See [7, Exemple 2.7.(b)].

2.3 Luna-Vust Theory for Symmetric Varieties

2.3.1 Spherical Varieties

Let us review the embedding theory of spherical varieties. Our main reference is [41] and [19]. Let
G’ be a connected reductive group. A normal G'-variety X is called (G’'-)spherical if a Borel subgroup
has an open orbit in X, or equivalently if a Borel subgroup has only finitely many orbits. If O is the
open G’-orbit in the spherical variety X, then O is a homogeneous spherical variety, and we say that X

is an O-embedding.
Remark 2.3.1. Here are several examples of spherical varieties.

1. If G’ is a torus, then the notion of G’-spherical varieties coincides with that of toric varieties, since

a torus is a Borel subgroup of itself.
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2. Rational homogeneous spaces G'/P’ are G'-spherical. This is a consequence of the Bruhat decom-

position.

3. Wonderful G’-varieties (Remark 2.2.10) are G'-spherical varieties. This is a result of Luna ([41,
Theorem 30.15]).

Luna-Vust theory ([27]) says that given a homogeneous spherical variety O, O-embeddings can be
classified in terms of combinatorial data, called colored fans, which can be constructed as follows. Let
O be a homogeneous G’-spherical variety, 7" ¢ G’ a maximal torus, and B’ ¢ G’ a Borel subgroup
containing T". For the set C(0)(F) c C(O)* of rational B’-eigenfunctions, define

Ao:={xex(B):b.f=x(b) f Ybe B for some feC(0)E,

which is a sublattice of the character group x(B') =~ x(T"). If C(O)?" c C(O)* denotes the set of

B’-invariant rational functions on O, then since we have a short exact sequence
0-C*=C(0)% > C(0)B) > Ap — 0,

a valuation v : C(O)* —» Q induces a group homomorphism Ap — Q. In other words, a valuation
corresponds to an element in the Q-vector space & := Homz (Ao, Q). Moreover, this correspondence is
injective for G'-invariant valuations ([19, Corollary 2.8]), hence we may identify the set of G-invariant

valuations on O with its image in &£, denoted by V and called the valuation cone. If we define
D(O) := { B'-stable prime Weil divisors of O}

and consider the valuation induced by each element of D(O), then a similar process yields a function
€:D(0) —» &, which is not injective in general. The elements of D(O) are called colors.

Next, consider a simple O-embedding X, meaning that X is an O-embedding which contains exactly
one closed G’-orbit. If Y ¢ X is the unique closed orbit in X, define

F(X)={DeD(0O):Y cDin X}.

We call each element of F(X) a color of X. Since G'-stable prime divisors of X can be considered as

elements of V, it is possible to define a convex cone in £ by
C(X) = Qs0{e(F(X)), G'-stable prime divisors of X).

Now let X be an arbitrary O-embedding. For every G’-orbit Y c¢ X, Y has a G’-stable open
neighborhood
Xy ={zeX:YcG x}

which is a simple O-embedding such that Y is its unique closed orbit. Thus to X, we can associate a
collection of pairs
F(X) ={(C(Xy), F(Xy)):Y is a G'-orbit in X}.

Then each (C(Xy), F(Xy)) is a colored cone, and F(X) is a colored fan, in the following sense:

Definition 2.3.2. Let &) be a finite dimensional Q-vector space, Dy a finite set, Vy c & a convex cone,

and €g : Dy = &y a function.

1. A colored cone for (&, Do, Vo, €0) is a pair (C, F) of subsets C c & and F c Dy such that
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(a) C is a convex cone generated by eo(F) and finitely many elements in Vp; and

(b) the relative interior of C intersects with V.
2. A colored cone (C, F) is called strictly convez if C is strictly convex and 0 ¢ €o(F).

3. For colored cones (C, F) and (C', F'), (C', F') is called a colored face of (C, F) if C' is a face of
the cone C and F' = Fney'(C').

4. A nonempty finite set § of colored cones for (&, Do, Vo, €0) is called a colored fan if

(a) For every element of §, its colored faces are contained in §; and

(b) For every v € Vg, there is at most one element of § of which relative interior contains v.
5. A colored fan is called strictly convex if it consists of strictly convex colored cones.

Keeping the previous notation, for a homogeneous spherical variety O, a colored cone/fan for
(€, D(0), V, ¢) is called a colored cone/fan for O.

Theorem 2.3.3 ([19, Theorem 4.3], [41, Section 15]). For a homogeneous spherical variety O, the map
X ~ §(X) is a bijection between isomorphism classes of O-embeddings, and strictly convex colored fans

for O.

Under this correspondence, a simple O-embedding X is corresponding to a colored fan consisting
of (C(X), F(X)) and its colored faces. Conversely, every strictly convex colored cone is induced from a
simple O-embedding.

A lot of geometric properties of spherical varieties can be expressed in terms of colored data. For

example, we have the following lemmas.

Lemma 2.3.4 ([19, Lemma 4.2]). For a G'-spherical variety X, the assignment Y — (C(Xy), F(Xy))
between G'-orbits in X and elements of F(X) is bijective and order-reversing. Here, the set of orbits is

(partially) ordered by inclusion of closures.

Lemma 2.3.5 ([19, Theorem 5.2]). A spherical variety X is complete if and only if the valuation cone
V is contained in the union of colored cones in the colored fan of X. In particular, if X is simple, then
X is a complete variety if and only if C(X) is generated by e(F(X)) and V.

Lemma 2.3.6 ([19, Lemma 7.5]). Let O be a homogeneous G'-spherical variety. Suppose that X is a
simple O-embedding and its unique closed orbit Y is projective. Let B’ be a Borel subgroup containing
a mazimal torus T', T" :== g1 -T' - g and B" := g7' - B' - g for some g € G', and wy a representative of
the longest element in the Weyl group of (G', T"") with respect to B". Then the stabilizer of the unique
B"-fized point in'Y is the opposite parabolic subgroup (containing B") of

wo-g - Stabg (D) - g - w61
DeD(ONF(X)

where the colored data D(O) and F(X) are defined with respect to B’.

Non-normal embeddings of a homogeneous spherical variety can be studied by the following propo-

sition:

Proposition 2.3.7 ([41, Proposition 15.15]). For a G-variety X admitting a G-linearized ample line
bundle, if X contains an open G-orbit which is spherical, then its normalization map 7 : X" - X is
bijective on the sets of G-orbits. That is, for a G-orbit O of X, n71(0O) is also a single G-orbit.
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Remark 2.3.8. Proposition 2.3.7 does not mean that the orbits are isomorphic as varieties. However,

since 7 is a finite birational morphism, O and 7~!(Q) are isomorphic if O is either open or projective.

2.3.2 Symmetric Varieties
From now on, we focus on symmetric varieties.

Definition 2.3.9. For a connected reductive group G’ and its closed subgroup K’, a homogeneous
variety G'/K' is called (G’-)symmetric if there is a nontrivial involution o : G’ = G’ such that (G')? c
K' c Ng/((G")?) where (G')? is the fixed point subgroup. A normal G’-variety which contains an open

G'-orbit isomorphic to a homogeneous symmetric variety is also called (G'-)symmetric.

A homogeneous G'-symmetric variety is G'-spherical ([41, Theorem 26.14], [11, Section 1.3]), and so
Theorem 2.3.3 can be applied to symmetric varieties. Indeed, Vust ([43]) obtains a practical description
of colored data for symmetric varieties, which is explained in this subsection, following [41, Section 26].

For simplicity, from now on, we assume that G’ is a simply connected semi-simple Lie group and
K':=(G")? for an involution o(# ¢d). This assumption implies that K’ = (G")? is a connected reductive
subgroup ([39, Section 8]). Put O := G'/K’, and let T" be a maximally o-split torus in G’. That is, T" is
a maximal torus such that 7" is o-stable and dim{t € " : o(t) = "} is maximal among all maximal tori.
As before, B’ is a Borel subgroup containing 7”. Then define R’ and S’ as the root system and the set of
simple roots defined by (G, T’, B’), respectively. Let T] be the identity component of {t € T" : o(t) =t~}

so that 77 is a subtorus of 7”. Consider subsets
Rlys= (@ e x(T}) s’ € R}~ {0},
Sg = {af e x(T7) : o} € S'} ~ {0}

where o/ := o/ |77. It is well-known that one can choose B’ so that for every positive root o’ € R' such
that o’ # 0, we have o(a’) < 0, under the natural action of o on R’ ([11, Lemma 1.2]; this condition
ensures that B'- K'/K' is open in O). Then Ry, becomes a root system of x(77) ®z Q with simple roots
in S;, ([41, Lemma 26.16]), called the restricted root system. Moreover, the lattice Ao is isomorphic to
the character group x(7"/T'nK') = x(T7/T{ n K"). This lattice is a sublattice of x(77) with finite index,
thus the vector space & is identified with x.(77) ® Q.

Observe that the restriction x(7")®zQ — x(77)®zQ can be identified with the orthogonal projection
x-o(x)

2
By identifying its image with x(77) ®z Q, the dual root system (Ry,)" can be realized as follows. For

x(T")®zQ - x(T")®2Q, x+

any o' € R satisfying o/ # 0, Vust [43, Lemme 2.3] shows that one of the following holds:
o o(a’') =-a’. In this case, put o = (a")¥. Then for all x € x(T), we have

<(al)\/’ X~ U(X))

Z0) = ).

—V _
(o, X) =
o ((a)Y, 0(a”)) =0. In this case, put o = (o) =o(a’)Y. Then for all x € x(T'), we have

@) = ()" o), X200 - (') - o)),

e ((a)Y, o(a’)) =1. In this case, put o = 2((a")Y = o(a’)Y). Then for all x € x(T), we have

@ %) = 24(a")" - o(a")", X T S a(x| o) - (x| o))
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Then (o', /) =2 for all o € R, and (R},)Y = {a’® : o/ € RL}.

Its base (S()Y, called the set of restricted simple coroots, can be obtained from the Satake diagram,
which encodes information on the action of ¢ on R’. Satake diagrams play an important role in the
classification of homogeneous symmetric varieties. For details and the list of all possible Satake diagrams
arising from simple Lie groups, we refer to [41, §26.5] and [36, Table 1]. The Satake diagram of o can

be constructed as follows.
1. Start with the Dynkin diagram of G'.

2. For every simple root (with respect to B’ and T” as before) which is o-stable, mark the correspond-
ing node by black.
3. Mark the nodes corresponding to o-unstable simple roots by white.

!

4. If two o-unstable simple roots a; #

satisfy o = 073, then join the corresponding (white) nodes

by a two-headed arrow.

Now put (S5)Y := {\Y: X € S, } where for each A = o/ € S};, with a slight abuse of notation, A is defined

as follows:

1. In the Satake diagram, if o’ represents a white node which is not joined by an arrow and not

adjacent to a black node, put A\Y := (a’)". (This is the case exactly when o(a’) = —a.)
2. Otherwise, put A := (') - o(a’)".
See [41, Remark 26.23].

Remark 2.3.10. If R}, is reduced, then there is no o’ € R’ with ((a’)", o(a’)) = 1, hence \Y = \" for
all \e S0

Theorem 2.3.11 ([41, Section 26], [43, Section 2.4], [37, Section 2]). In the previous notation, via the
isomorphism &€ ~ x.(T]) ® Q, we have the following identifications:

1. The lattice Ao is identified with the doubled weight lattice 2- (Z{(R)"))* c x(17) ® Q.
2. The image ¢(D(0)) in € is exactly 3(S,)".
3.V is identified with the negative Weyl chamber of (Ry))" in £.

Moreover, if K' is semi-simple, then the map € : D(O) — £ is injective. In this case, if D € D(O) is sent
to %/\V for some A € Sp,, then the stabilizer Stabe/ (D) of the divisor D c O is

StabG/ (D) = P{, —

a’eShal =
J J

A}
i.e. the parabolic subgroup containing B’ and generated by simple roots oy, € S” such that either OT;C =0

or of € SHN {A}.

Remark 2.3.12. In general, K’ is not necessarily semi-simple, and it is possible that the color map € is
not injective. Namely, if G' is simple, K’ is not semi-simple and AY € (Sf,)" is short (i.e. its length is the
minimum among (R},)"), then e '(\Y/2) consists of two colors by [41, p. 157]. For example, consider
G'=8L,41 (r>2) and an involution ¢ : G’ > G’ defined as

—iday 0
o(9)=1a-g- Iz, Iy:= - . )
0 id(r—1)x(r-1)
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Then

M. 0
K’:(G,)U:{( 02 M )ESLT+1IMiEGLi,i:2,T—1}:S(GL2XGLT_1).
r-1

Since K’ contains a maximal torus of G’ while its semi-simple part (= SLy x SL,_1) is of rank r -1, K’

is not semi-simple. The Satake diagram of O is

if r >4,

oo if r =2, S if r=3, and \V\—//
and the restricted root system Ry, is BC if r =2, Cy if r = 3, and BCy if r > 4. See [36, Table 1]. In the

following, we describe € and the stabilizer of each color:

o Ifr =2, thensince Ry, = BC, (S5)Y = {\V} consists of a short coroot. Thus by [41, p. 157], D(O) =
{D1, D3} such that ¢(Dy) = e(D3) = \Y/2. Moreover, by [37, p. 151-152], up to rearrangement, we
have

Stabg:(D;) = Par j=1,2.

o If r =3, then R, = C5. Put A\ := 671 = 075 and Ao := oz, the elements of S(,. In this case, we
have o(af) = —a4 and o(ah) = —a. Thus A = (o)) + (a})Y and Ay = (a5)Y, hence (AY|Ay) = -2.
It means that (S5)Y consists of A] (long) and Ay (short). By [41, p. 157], we have D(O) =
{D1, Dj, D3} such that

(D)= N, e(Df) = N,

and by [37, p. 151-152],

StabG/(Dl) = P{I \/:)\\1/}(: P(;/Uag), StabGV(DQi) = _Z:)(;/2

a’eS":al,
J J

o If r >4, then R, = BCy. Put \; :=a} =al and Ay :=al, =a’_,. Then using [11, Lemma 1.4], one

can check that o(a}) = —al., while {(a})Y, o(aj)) = 1. Thus we have
(AVIA3) = (AT 1A /2) =2- (A2, A)) = 2.

That is,
(S5)Y ={A} (not short), Ay (short)}.

By [41, p. 157], we have D(O) = {Dy, D2, D,_1} such that
Ly 1.,
e(Dy) = 37 €(D2) = €(Dr-1) = 272

and by [37, p. 151-152],

Stabg: (D1) = P oy (= Pl r), Stabai(Dz) = Ply,  Stabar(Dy-1) = Ply_ .

’ T —
aedShial.=
jeshal =AY
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Chapter 3. Geometry of Conics on Adjoint Varieties

In this chapter, we study geometry of conics on Z,. Namely, we show that there is an open G-orbit
in the space of smooth conics on Zg, which can be described in terms of the contact distribution. Then
we prove that it is a G-symmetric variety, and then study B-fixed points in its boundary. From now on,

we assume that dim Z; > 1 (i.e. g # Ay, or equivalently Z, ¢ P').

3.1 Conics on Adjoint Varieties

Our goal is to study deformation of smooth conics on the adjoint variety Z; c P(g). Note that the

family of smooth conics on Z; c P(g) is parametrized by
Ry (Zy) = [[Ra(Zy)

where & runs over elements of form ¥, cn(,) mi - oy

such that m; € Zyo and (p, &) = 2. Namely, if g is
not of type A, then since N(p) = {a;, },
Ro.ov (Z4) if g is not of type C,
RQ(ZQ) = R(Q/(plajo)),ajv_o (Zg) = 7o g .
RQY(ZQ) ifg=C,,r>2.

On the other hand, if g = A, 7 > 2, then since N(p) = {a1, a,},

RQ(Zg) = Rgay(zg) [} RO‘YJraX(Zg) U R2a¥(Zg)-
By taking closures, define subsets
g = R&g(Zg) c Hﬂb2m+1(Zg, OIP’(g)(l)|Zg)7
i=Rq, (Zy) c Hilbs,,, 1 (Zg, Op(g)(1)]z,),
g = Rdg (Zg) c ChOWLQ(Zg, O]P’(g)(l)|Zg)7
COCg = Rdg (Zg) C COC(ZQ, Op(g)(lﬂzg).

o = &

where

oy ifg=C,, r>2,

Ggi=1 af +a) ifg=A.,r>2

203, otherwise.
By Theorem 2.2.6, these are irreducible subsets. Indeed, by Corollary 2.2.5 and Theorem 2.2.3, each of
them is an irreducible component of the (semi-normalized) Hilbert scheme, the Chow scheme, and the
space of complete conics, respectively. From now on, we consider ﬁg, H,, C, and CoC, as projective
varieties equipped with the reduced scheme structures. Then they admit the natural G-actions, and

G-equivariant birational morphisms

nor CHAT o pemer
CoCher CH ppnor £C75 o
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which are isomorphisms over the loci of smooth conics (= Ry, ) and reducible conics.

Remark 3.1.1. There is a commutative diagram

H!" —— HY' —— H,

L

—=nor

H, — H, — H,.

Every arrow represents a finite birational morphism, and so in particular, the leftmost arrow Hy*" — ﬁ;wr
is an isomorphism. Moreover, all arrows but Hy?" — H"™ and ﬁ:m - ﬁ:n are bijective, and in particular
H" - ﬁ;n is an isomorphism. However, in general, irreducible components of a semi-normal scheme
are not necessarily semi-normal (see [21, p. 308]), so it is not clear whether the morphism Hy" — Hj is

an isomorphism.

Since Ry, is not compact (unless g is of type C; see Subsection 3.1.1), the four compactifications
parametrize singular objects in their boundaries. Nonetheless, recall that their scheme structures are

easy to describe (Proposition 2.2.8).

Definition 3.1.2. Let C be a conic on Z; c P(g). We say that C' is planar if the unique plane containing

it in P(g) is also contained in Z,. Otherwise C is called non-planar.
Remark 3.1.3. Let C c Z; be a conic.
1. C is a smooth conic, a reducible conic, or a double line by Proposition 2.2.8.

2. If C is a reducible conic, then C' admits a smoothing in Z; (see for example [20, Theorem II.7.6]).

That is, every reducible conic on Z; is a member of our four compactifications.

3. If C is planar, then we shall show that its G-conjugacy class is determined by the G-conjugacy
class of the plane spanned by C. See Corollary 3.5.4.

4. By Theorem 2.2.3, the restriction of the Hilbert-Chow morphism FC

H,  {double lines} - C4 \ {double lines}

is an isomorphism. In Subsection 3.1.1-3.1.2, we show that if g is of type A or C, then there is no

double line in Hy, hence F'C': Hy - C is an isomorphism.

Let us introduce two more types of smooth conics, using the G-invariant contact distribution D c

TZ4 on the adjoint variety.

Definition 3.1.4. Let C be a smooth conic on Zj.
1. Cis called a twistor conic if T,,C ¢ D, for every x € C.
2. C is called a contact conic if T,,C c D,, for every x € C.

It is well-known that every smooth conic is either a twistor conic or a contact conic. Indeed, if
f:P' > C c Zg is a smooth conic, then since TZy/D = Op(4)(1)|z, (Section 2.1), we have a bundle
morphism

d
01 (2) » TP' L [*(T2,) > (T2, D) = Ops (2)
which is either an isomorphism or the zero map. In the former case, C' is a twistor conic, and in the

latter case, C is a contact conic.
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Example 3.1.5. 1. Let C, be the intersection of Zy and a plane
P(E,, H,, E_,)={[a-E,+b-H,+c-E_,] eP(g): [a:b:c] e P?}.

Then C, is a smooth conic parametrized by exp(g-,) -0 where 0:= [E,] € Zg, hence it is a twistor
conic. Indeed, this conic is a fiber of the twistor fibration constructed in [44]. In particular, Ro(Zy)

is non-empty for all g.

2. Every smooth planar conic is a contact conic, since every line on Zg is tangent to D (Subsection
2.2.2). Note that if g = G4, this fact does not provide any example of contact conics since there is
no plane on Zg, ([23]). In fact, in Theorem 5.2.4, we shall show that there is no contact conic on
Za

PR

3.1.1 The Case of Symplectic Lie Algebras

Geometry of conics on Zj is particularly simple when g is of type C'. To see this, let g = C,. for some
r>2. Then g =sp(V) and G = Sp(V') for a symplectic vector space V of dimension 2r. In this case, the

adjoint representation g is isomorphic to Sym?V as a G-representation, and the morphism
viP(V) > P(Sym®V), [v]~ [v”]

defines a G-equivariant embedding, hence Zj is the second Veronese embedding vo(P(V'))(~ P*"~1). Thus

conics on vo(P(V)) are exactly lines on P(V'), and
Ry (Zy) »Hy ~ Cy =~ CoCy = Gr(2, V).

Observe that dim Gr(2, V') = 4r — 4, and the isotropic Grassmannian IG(2, V') is a unique closed G-orbit
in Gr(2, V). In fact, its complement Gr(2, V)\IG(2, V) is a single G-orbit, isomorphic to a homogeneous
symmetric variety Spa,./Spa x Spa,_2, since a non-isotropic 2-subspace is necessarily non-degenerate. In
our terminology, for a conic C' c a(P(V)), [C] € IG(2, V) if and only if C is a contact conic, and
[C] ¢ IG(2, V) if and only if C is a twistor conic. Also, every conic is non-planar, since v2(P(V')) does

not contain a linear subspace.

3.1.2 The Case of Special Linear Lie Algebras

In this subsection, we describe compactifications of RQ%v(Zg) forg=A, (r>2)andi=1,r, ie.
the components of Ry(Z,) different from Rg,(Zy). Let g = sl(V) and G = SL(V) where V is an
(r + 1)-dimensional vector space. If we put V4 := V and V,. := V*, then the adjoint representation g is
a subrepresentation of gl(V') ~ V4 ® V.. Moreover, for the partial flag variety Fl; (V') = {([z], [{]) €
P(V1) xP(V,.) : i(z) = 0} and the Segre embedding

o:P(V1) xP(V;) > P(Vi @ V) =P(gl(V)), ([z], [1]) = [z l],

one can show that o(Fly (V)) c P(sl(V)) = P(g). Since o is G-equivariant, o defines an isomorphism

Zg = Fly (V) satisfying Op(q)(1)|z, = Opcviev,)(Dlr1, (v)-
Consider the natural projection p; : Fly ,.(V') - P(V;) for each i = 1, r. Then we have Op(gy(1)|z, =~
PIOp(vy) (1) ® pyOp(y,y(1). Thus for any conic C' on Fly .(V'), one of the following holds:

1. C is of degree 2 with respect to pjOp(y;)(1). In this case, we say that C'is a (2, 0)-conic.
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2. C is of degree 2 with respect to p;Op(y,)(1). In this case, we say that C'is a (0, 2)-conic.

3. C of degree 1 with respect to both piOp(v;)(1) and p;Op(v;,)(1). In this case, we say that C is a
(1, 1)-conic.

Observe that a smooth (2, 0)-conic is contracted by p,. Moreover, since V; is the first fundamental
representation of G, Raay(Zg) parametrizes smooth (2, 0)-conics. Similarly, a smooth (0, 2)-conic is
contracted by p1, and Raayv(Zy) parametrizes smooth (0, 2)-conics. Furthermore, a double line cannot
be a (1, 1)-conic, hence every member of Hy is either a smooth conic or a reducible conic. As Ry, (Z4)

parametrizes smooth (1, 1)-conics, we have
FC:Hg > Cy, and CH®':CoCj" > HJ".

The contact structure of F1; ,.(V') can be described in terms of the projections p; and p,. For each
point ([zo], [lo]) € Fl1,(V'), we have

(1) ([z0]) = [wo] x {[1] € P(V;) : L(z0) = 0}, ()™ ([lo]) = {[x] € P(V1) : lo(=) = O} x [lo],

and both of them are linear P"~! in P(V; ® V;.). Thus the tangent spaces of (p1)™([x0]) and (p,-) ™' ([lo])
generate a (2r - 2)-dimensional subspace in T{[4,], [1,])Fl1,n+1(V'), which is invariant under the action of
Stabg([zo], [lo]), hence it is the contact hyperplane. In particular, smooth (2, 0)- or (0, 2)-conics exist
only when r > 3, and in this case, they are planar and contact conics.

To study conics contracted by p; for i = 1, r, assume that r > 3, and define

Hi = RQQ;/ C Hllb;n (Zg7 OP(g)(1)|Z9)a

m+1
Ci = RQ(X;/ C ChOWLQ(Zg, OIP’(Q)(l)lZg)’
CoC,; = R2a1V c COC(Zga O]P’(g)(l)|zg)7
ﬁz’ = R2aiv C Hilbg,,Hl(ZQ, O]p(g)(l)|zg).

As before, these are projective G-varieties. Moreover, since planes spanned by smooth (2, 0)-conics and
by smooth (0, 2)-conics are contracted by p, and by p1, respectively, we have a diagram of G-equivariant

morphisms

H, % C;

|

CoC; ﬂ) ﬁi — P;

where P; is the space of planes on Fly (V') contracted by p; for i’ € {1, r}\{i}. In fact, by [23, Theorem

4.9], P; is a rational homogeneous space under the natural G-action, and
P1 ~ F137T(V), Pr ~ Fll,T_Q(V).

(In particular, dim P; = 4r—9.) Thus for a plane [PW;] € P; (W, <V} ® V., dim W; = 3) and its stabilizer
Q; := Stabg(W;), Q; acts on the plane PW; transitively, hence there are bijective morphisms

G xg, P(Sym*W}) - H;, G xg, CoC(PW;) - CoC;,
which induce isomorphisms

G xq, P(Sym®W;)=~H, ", G xg, CoC(PW;) = CoCr".
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Indeed, @Q; acts on W; via a surjection @; - GL(W;), which induces a spherical action of the Levi
subgroup of @; on P(Sym*W;) and CoC(P(W;)). In other words, the homogeneous fiber bundles
G xq, P(Sym*W;) and G xg, CoC(PW;) are parabolic inductions of P;, in the sense of [41, Definition
5.9 and §20.6]. By [41, Proposition 5.10] they are G-spherical varieties of dimension 4r -4 and of rank 2.
Therefore by Proposition 2.3.7, H; has exactly three orbits, consisting of smooth conics, reducible conics
and double lines, respectively, while CoC; has exactly four orbits, corresponding to the Q;-orbits in
CoC(PW;) (see Subsection 2.2.3). As H, ' is smooth, the morphism H" - H,” is an isomorphism.
It means that the normalization CJ'°" is a G-spherical variety consisting of three G-orbits, consisting of
smooth conics, reducible conics and double lines, respectively.

The previous discussion shows that the compactifications of Rga}lf are related via the following

morphisms

—=nor

CoC7"" (= G x, CoC(PW;)) S H'™" = HI'" (= G xq, P(Sym?W;)) €% cpor

|

Pi(~G/Qy)

where each horizontal arrow is birational. Furthermore, CoC}°", H?*" and C}°" have unique closed
G-orbits, isomorphic to
].:‘11’2’37,«(‘/')7 F12’3’T(V), and FIQ’T(V)7

respectively when ¢ = 1, and isomorphic to
Fll,r—27r71,r(v)7 Fll,r—Z,r—l(V)v and Fll,r—l(V)a

respectively when ¢ = 7. (For example, for H*" and CI'°", the unique closed G-orbits are the loci of

double lines.) In particular, the morphism CH™" : H}*" — CI°" is an isomorphism if and only if r = 3.

Remark 3.1.6. Alternatively, H?°" can be described as follows. Recall that for i’ € {1, r} \ {i}, smooth
conics parametrized by Roav(Zy) are contracted by pi. Consider the (dualized) Euler sequence over
B(Vi)

0— & - Vi®Opw,)(-1) = Opv,y = 0.

Here, Op(y,,y(~1) is the tautological line bundle over P(Vi), the quotient map is given by the natural
pairing (which makes sense since V; ~ V;7), and &; is a vector bundle of rank r defined as the kernel.
By the above description of the fibers of p;/, we see that Fly ,41(V) ~ P(€y) as projective bundles over
P(Vir) via a G-equivariant isomorphism. Consider the Grassmannian bundle Grp(y,,)(3, &) over P(V;r),
equipped with the universal subbundle S;;. That is, for each z € P(Vj/), the fiber of Grp(y,,)(3, &) at
x is the usual Grassmannian Gr(3, &y ,) and the restriction Sy|, is the universal bundle of subspaces
associated to Gr(3, €y ,). Since Grp(y,,)(3, &) parametrizes 2-planes on the fibers of p;/, the projective
bundle G; := P(Sym>S}) over Grp(v,)(3, &) parametrizes conics contained in the fibers of py. Indeed,

Gy is isomorphic to the normalization H?°" (as G, is smooth and the natural map G, — H; is bijective).

Now we have a description of the space of (2, 0)-conics and (0, 2)-conics. For (1, 1)-conics, in

Proposition 5.1.1, we shall give a blowing-up construction using our main theorem (Theorem 3.2.2).

3.2 Main Theorems

Now we state our main theorems. Recall that n is the integer defined by 2n + 1 =dim Z;(> 1).

25



Theorem 3.2.1. Twistor conics form an open G-orbit in Ry, isomorphic to a 4n-dimensional homo-
geneous symmetric variety Og == G/G? for some involution o : G - G. The Satake diagram of o is given
in Table 3.1.

In the second column of Table 3.1, we denote by D; the 1-dimensional toral Lie algebra (~ so02). In

particular, G° is semi-simple if and only if g # A, for all r > 2.

Theorem 3.2.2. The normalizations Hy°", Cy°" and COCZOT are projective G-symmetric varieties

equipped with the G-equivariant birational morphisms

CochT‘ CH™" H;LOT FCOmer C’gor.

Moreover, as Og-embeddings, their colored fans are given as follows.
1. C§°" is a simple Og-embedding with its colored cone in Table 3.2.
2. The colored fan of Hy®" consists of colored cones listed in Table 3.5 and their colored faces.
3. The colored fan of COCZOT consists of colored cones listed in Table 3.4 and their colored faces.

The proofs of Theorem 3.2.1 and Theorem 3.2.2 are given in Section 3.3 and Chapter 4, respectively.

Tables 3.2-3.4 show that H;°" (and CoC{°") is simple as a G-spherical variety if and only if g is
of type A, type C or an exceptional type. Otherwise, the number of closed orbits is 3 if g = Dy, and 2 if
g=soy for N>7 and N #8.

Let us explain the notation in Tables 3.1-3.3, assuming Theorem 3.2.1. As in Subsection 2.3.2, let
T’ be a maximally o-split torus, and B’ be a Borel subgroup containing 7" such that for every positive
root o with respect to B’ satisfying o/ # 0, we have o(a’) < 0. Then there is g € G such that 7" = g-T-g~!
and B’ = g-B-g~*. (To see this, choose any gy € G such that T’ = go - T - g5*. Then there is w € N(T")
such that B’ = w-(go-B-gg')-w™! since N(T") acts transitively on the set of Borel subgroups containing
T’'. So we may put g:=w-gg.) Then we define the ingredients in Subsection 2.3.2, using 7" and B’. For

example, the root system R’ and its simple roots S’ are given by
R'=RoAdyr ={d:=ao0Ad;r:aeR}, S =So0Ady={a}=a;0Ad,1:a;€S}.

We index restricted simple roots S'OB ={A1, A2, ..., An} as in the last column of Table 3.1. When R'Og
is reduced, the indexing agrees with [32, Reference Chapter, Table 1]. For B’-colors of Oy, i.e. elements

in D(Oy), we use the following notation:

« If g= A, (r>2), then Oy is indeed isomorphic to G'/K" given in Remark 2.3.12. For S and
D(0Oy), we keep the notation of Remark 2.3.12.

o If g# A, (r>2), then by Theorem 3.2.1, K = G7 is semi-simple, hence the map €:D(Oy) - € is
bijective onto 3 - (Sp_ )" by Theorem 2.3.11. So we put D; := ¢~' (A]/2) € D(Oy).

In this notation, the (positive) Weyl chamber is given by =V = Qx0(71, ... 7m) where v;’s are defined
by the relations (\;, v;) = d;;. If g is of type A or C, then since the rank of R’Og is at most 2, {;} can
be easily computed. In other cases, since R'Og is reduced, the expression of 7; in terms of the restricted
simple coroots (S )" = {A{, ..., A;,} can be read off from the jth rows of the matrices in [32, Reference

Chapter, Table 2]. In fact, the ith column (c1; -+ ¢m;)? of the matrix for R’Og means

m
Ti= Y Chit Ak
k=1
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g ‘ g7 (=Lie algebra of G?) ‘ Satake Diagram of Oy ‘ R’Og ‘ S'OE
Ar Ao®A @D B, | Mo
o ® @ 0—0O—e— —8—0—0 o
(7"24) 2 1 1 V\V\:// 2 )\Q_aé:a;_l
A AleA @D oo c A= = o
3 19410 ~_ 2 o = o
2 = Qo
Ay A1 ® Dy o—=7° BC4 )\:7,1:7,2
G Cr10 A —e=e BC; )\2?
(r>3) " : ’ ?
Csy A1€BA1 T‘? A1 /\:;,2
B B, o® A ® A 00— —0—8——tzc By A =J(l<7<4)
(r>4) " 4 r L -
B3 A1 A0 Ay ?_g:tg Bs AZ:;;(1§Z§3)
D D Ao A {Pl By | M=ol (1<i<4
r— (23] (&) 0—O0——0—8— i = <
(7'26) ? ! ! 4 r 4 1( ‘ )
4 Ni=al (1<i<3)
Dy Dso Ao Ay @_O_<I By -
1 5 Ay =al) =af
3 _
Dy Aio A1 A @ Ay T;{ Dy A =« (1<L<4)
4
A1 =af = aj
2 Ao =al, =d
Es As ® Ay 12 /315 Fy —
6 Az = ajg
Ay = ol
M-
E Deo A e g oo F A=l
D -
Ay =l
A =al
2 3 7 )\2:07’3
Eg Er,e® Ay Fy —
I Az = aj
)\420/1
Fy Cs@ Ay oo Fy | Ai=a] (1<i<4)
Gy Ao Ay iEg Go )\Z:OT;(1<Z§2)

Table 3.1: Satake diagram and the restricted root system of Oy.
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| g | (C(Cper), F(Cpr))

A, (r>3) (Qs0(-71, —72), @)
A27
G, (r22) (Qs0{-7), @)

By (r=4), A, AY), {Ds, D
Dr (7‘ 25) (@20(‘71, V2, V4, A9, 4>a { 2 4})
B3 (Q20<_717 -2, =73, )‘\2/)’ {DQ})

Dy (Qs0(~71, =72, =73, =74, A3), {D2})
E, (r=6,1,8),
(T F ) (Q20<_’717 V4, /\\1/7 )‘\Q/a AX)» {Dla D27 D4})
4
G (Qs0(=72, A3), {D2})

Table 3.2: Colored cone of Cg°" in Q((Rp_)").

g ‘ Maximal Colored Cones in §(Hy"")
A, (r23) (Qx0(-71, —72), @)
L (@0l 2)
Cr (r>2) 20870
B, (r>4), v oy Y
(Qs0(=72, =71, A3, AL), {D2, Da}), (Qs0{-71, =725 =75 A3), {D2})
D, (r>5)
B3 (Qs0(~7i» =72, A3), {D2}) fori=1,3
D4 (@20<_’Yj7 A\Q/ j € {1a 27 Sa 4} N {Z}>7 {D2}) fOI‘ 1= 1a 37 4
E, (7’ =6,7, 8)7
7 (Qz0(=71, =71, AY, AY), {D1, Da})
4
Gs (Qs0(~72, A3), {D2})
Table 3.3: Colored fan of Hg”" in Q{(Rp,)")-
g ‘ Maximal Colored Cones in F(CoCy”")
Ay (r23) (Qs0(-71, —12), @)
k. (@0l 2)
OT (7“ > 2) >0\~7)>
B, (r>4), Y
(Qz0(~72; =74, =71 =735 AL)s {Da}), (Qs0({~71, =72, V45 =71 = 73), @)
D, (r25)
Bs (Qso0(~vi» =72, =11 —3), @) for i =1, 3
D4 (QZ()(_’YJH Y1~ 73— 7V4 ] € {17 27 3a 4} N {Z}>7 @) for i = 17 3; 4
Er (T‘ = 67 73 8)3
P (Qs0{~71, =73, =74, A1), {D1})
4
G> (Qs0(-71, —12), @)

Table 3.4: Colored fan of CoCy®" in Q((Rp,)")-
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where m; is the ith fundamental weight of R’Og, hence if y; = Y% dij - A, then
dij = (71, ) = ¢,
i.e. the coefficients c;1, ..., ¢jm of v; form the jth row. We summarize the result as follows.
« Ifg=A, (r>4), then R, = BCs and
Y1 = )\\1/ + )\\2/,
Y2 = )\\1/ + 2)\\2/
where \Y(= A{) and \y(= \Y/2) are basis elements of (Rp,)" (see Remark 2.3.12).
o If g= As, then R'OB =(Cy and
M= )‘\1/ + )‘\2/7
1
Y2 = 5)\\1/ + )\;
o If g= Ay or C, (r > 2), then Rbg = BCy, and v = y; = \Y where \V(= A\V/2) means the basis
element of (R )" (hence (A, A¥) =1; see Remark 2.3.12).
e If g= B,s4 or D,s5, then R'OB = By and
1
TR MDD LD S 5)\2,
Y2 i= AY 4205 + 22 + A},
3
Y3 =AY 205 + 3y + 5)\[{,
4= AY + 203 + 3A + 207,
e If g= Bs, then Rbg = B3 and
\ \ 1 \
V1= A Ay 5/\3,
Y2 = A\l/ + 2)\\2/ + A;,
3
Y3 = A\ll + ZA\Q/ + 5)\5/
o If g= Dy, then Rbg =D, and
. v v 1 v 1 v
"yl = )\1 + A2 + 5)\3 + §A47
Yo =AY 20 + A + A,
1 1
V3 = 5){ +Ay+ Ay + §>\X,

1 1
Y4 = 5)\\1/ + A\2/ + 5)\2@)/ + AX

e If g is of an exceptional type other than G5, then R’Og = F, and
1= 20 +3Ay + 4N + 2],
Y2 1= 3A] + 6y + 8AY + 4],
73 = 20] +4Ay + 6A + 3],
=AY 4205 + 3y + 20
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o If g=Gs, then R . = G9 and
1= 20 + 3Ny, 2= A +2)5.

Let us close this section after collecting colored faces of the colored cones in Table 3.2 and Table
3.3. Since each colored face (C, F) is determined by its underlying cone C, it suffices to write C. In the

following list, we classify the colored faces according to their dimensions.

1. The nonzero non-maximal elements in the colored fan defined by Table 3.2:
(a) When g=A, (r>3):
i dim = 1: Qs0(-71), Qs0(-72)-
(b) When g = Ay or C, (r > 2), there is no nonzero proper colored face.
(¢) When g is Bysq or D;s5:
i dim =3: Quo{-71, =72, =7a), Qa0(-72, =74, AY)-
ii. dim =2: Qso{—vi, —v;) for i # j € {1, 2, 4}, Qzo(~7a, AY)-
iii. dim =1: Quo{—;) fori=1, 2, 4.
(d) When g = Bs:
i dim =2: Qs0(-71, =72), Q0{-72, —73)-
ii. dim =1: Quo{—;) fori=1, 2, 3.
(e) When g = Dy:
i. dim =3: Quo(—72, =i, —;) for i # j € {1, 3, 4}.
ii. dim =2: Qso(—v;, —;) for i # j € {1, 2, 3, 4}.
iii. dim =1: Quo{—y;) for i =1, 2, 3, 4.
(f) When g is one of Fg, Er7, Eg and Fy:
i. dim = 3: Qs0{-v1, =7V, AY)-
i, dim = 2: Qso(-71, =7a); Qs0({-71, AY)-
iii. dim =1: Qso(—y;) for i =1, 4.
(g) When g =Gs:
i. dim =1: Qso{-72)-
2. The nonzero non-maximal elements in the colored fan defined by Table 3.3:
(a) When g=A4, (r>3):
i dim =1: Qs0(-71), Qs0{-2)-
(b) When g = Ay or C, (r >2), there is no nonzero proper colored face.
(¢) When g is Bysq4 or D;s5:
i dim =3: Qso(-71, =72, =74), Q20(=72, =74, AL); Qs0{-72, =i, A3) for i e {1, 4}.
ii. dim =2: Qso(—vs, —;) for i # j € {1, 2, 4}, Qso(—yk, A)) for k e {2, 4}.
iii. dim =1: Qyo{—;) fori=1, 2, 4.
(d) When g = Bs:
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i dim =2 Quo(—71, —72)s Qs0(—72, —73), Qs0{—72, A3).
ii. dim=1: Qyo(-7;) fori=1, 2, 3.
(e) When g = Dy:
i. dim =3: Qso(—72, =i, —v;) for i # j € {1, 3, 4}, Quo(—2, =&, Ay) for ke {1, 3, 4}.
i dim =2: Qso{-i, —7;) for i #j € {1, 2, 3, 4}, Qs0(-72, Az)-
iii. dim =1: Quo{—y;) fori=1, 2, 3, 4.
(f) When g is one of Fg, E7, Eg and Fy:
i dim =3: Qso{-71, =74, AY), Qs0{=71, =74, AY)-
ii. dim =2: Qso(-71, —74), Qs0(—71, AY)s Qs0(—7a, AY).
iii. dim =1: Qso(—y;) for i =1, 4.
(g) When g = Ga:

i. dim = 1: Qso(-72)-

3.3 Sphericality of Space of Twistor Conics

In this section, we prove Theorem 3.2.1, and that in every tangent direction off the contact distri-

bution, there is exactly one twistor conic.

Lemma 3.3.1 ([17, Lemma 5]). The unipotent radical R*(P) of the isotropy group P at o € Zy acts
transitively on the open subset P(T,Zy) N P(D,) in the projectivized tangent space.

Proof. This statement is shown in the proof of [17, Lemma 5], in the case where g is not of type A or C.
In fact, its proof works for all Zg. For the sake of completeness, let us record the proof for all Zj.

Recall the contact gradation (see Section 2.1)
0=02001900®01 ®02, p=0, 8= D g Vito
(@lp)=i
Observe that if « € R with (a|p) = £1, then « F p is also a root such that {(«a ¥ p|p) = F1. Thus

[9—p7 91] =g-1. Since
TOZQgg/pa -Dog 71/]3,

we see that [g_,] € P(T,Z,) ~ P(D,), and its orbit under the R“(P)(= exp(g"))-action is open in
P(T,Z4) ~P(D,). Furthermore, since P(D,) is a hyperplane, P(T,Z;) \P(D,) is an affine space (~ C*"),
hence every R"(P)-orbit is closed by [5, Proposition 4.10]. Therefore R*(P)-[g-,] = P(ToZ4)\P(D,). O

Lemma 3.3.2. 1. The normal bundle of a twistor conic in Zg is isomorphic to Op1(1)®*".
2. dimRg, (Zy) = 4n.
3. The locus of twistor conics is an open G-orbit in Ry, (Zy).

Proof. Recall that Re,(Zy) is an open subscheme of the Hilbert scheme (Corollary 2.2.5), containing the
locus of twistor conics (Subsection 3.1.2). Let C be a twistor conic and f: P! - C c Z; an embedding.
By Lemma 3.3.1 and [20, Theorem I1.3.11], f is free over 0 — f(0), i.e.

2n+1
["TZg~ @ Opi(a;), forsome aj > > as,1 >0.
i=1
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Since the anti-canonical bundle K éi is isomorphic to Op(qy(n+1)|z, (see [24]) and C'is a conic, we have

2n+1
2(n+1) = degp: f[* K. = degps fTZg= Y a;.
=1

This is possible only if a; = 2 and ag = -+ = asp41 = 1, hence the normal bundle of C' is isomorphic to
Op1(1)®2". In particular, the dimension of the Hilbert scheme at [C] is 4n, and so dimRg, (Zy) = 4n.
Now consider the space Hombir(Pl, Zg) of morphisms from P! to Z4 which are birational onto their
images. Let V be the closure of the G x Aut(PP!)-orbit containing [f] in Homy,,. (P!, Z,). By Lemma
3.3.1, for arbitrary x € Zg, Locus(V, 0 = z) is open in Z. Thus by the proof of [20, Proposition IV.2.5],

for general points x and y in Z;, we have

dimV =dim{[h] € V : h(0) = x, h(o0) =y} + dim Locus(V') + dim Locus(V, 0 ~ z)

>4n+ 3.

Therefore by [20, Theorem I1.2.15], the G-orbit containing [C] in the Chow scheme is at least 4n-
dimensional, hence each orbit containing a twistor conic is (Zariski) open in Ry, (Zg). Since Ry, (Z4)

is irreducible (Theorem 2.2.6), all twistor conics are in the same G-orbit. O

Lemma 3.3.3. The stabilizer Stabg(C,) of the twistor conic C, = ZgnP(E,, H,, E_,) introduced in
Ezxample 3.1.5 is the connected Lie subgroup K of G associated to the Lie subalgebra

L=go®gs®g_o.

In particular, Staba(C,) is a reductive subgroup of same rank with G, and the Dynkin diagram of its
semi-simple part can be obtained by deleting the nodes adjacent to —p in the extended Dynkin diagram of
g (Table 2.1).

Proof. Observe that g € G stabilizes C,, if and only if it stabilizes P(E,, H,, E_,). Thus the Lie algebra £
is contained in the Lie algebra of Stabg(C),), hence K c Stabg(C)). For the converse, let g € Stabg(C,),
and then claim that g € K. Observe that the sl algebra C- H, ® g, ® g_, is contained in &, and the
corresponding SLs acts transitively on C,. Thus we may assume that g fixes o € C), i.e. g€ P. Now
consider the Levi decomposition P = R*(P) » L where R*(P) is the unipotent radical of P and L is
the standard Levi subgroup. That is, the Lie algebras of R*(P) and L are given by g' and by go,
respectively. Since L c K, we may assume that g € R*(P), say g = exp(X) for some X € g!. Note
that since g = exp(X) is unipotent, exp(tX) € Stabg(C,) n P for every t € C, hence exp(tX) stabilizes
ToCy~g-p, modp in T,Zy ~ g/p. Therefore

[X,9-p] modp c g, modp ing/p.
This is possible only if X € g,, hence g € K. O

Theorem 3.3.4. Let v be a nonzero tangent vector of Zy which does not belong to the contact distribution

D. Then there is exactly one twistor conic tangent to v.

Proof. By Lemma 3.3.1, we may assume that v € T,,C,. Suppose that there is a twistor conic C' tangent
to v at o. By Lemma 3.3.2, there is g € G such that C' = g-C,. We claim that g is indeed contained in
K = Stabg(C,). Since K contains the Lie subgroup corresponding to C- H, ® g, ® g—,, we may assume
that g fixes o, i.e. g € P. Since the tangent directions of C' and C, coincide, g stabilizes T,C),, hence by

repeating the argument in the proof of Lemma 3.3.3, we conclude that g € K. O
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Proposition 3.3.5. There is an involution o : G - G such that the fized point subgroup G° is K.

Proof. By the proof of [44, Theorem 5.4], there is an inner involution on a real form of g such that the
(+1)-eigenspace is a real form of €. By taking its C-linear extension over g, since G is simply connected,
we obtain a holomorphic involution ¢ : G - G, and the (+1)-eigenspace of its differential at the identity

element is €. Since G is connected ([39, Theorem 8.1]), we have G = K. O

Proof of Theorem 3.2.1. By Lemma 3.3.2, Lemma 3.3.3 and Proposition 3.3.5, twistor conics form an
open orbit in R, (Z,), isomorphic to the homogeneous symmetric variety Og := G/G of dimension 4n.
From Lemma 3.3.3 and the classification of Satake diagrams for simple Lie algebras in [36, Table 1] (see
also [41, Table 26.3]), we easily obtain the Satake diagram of Oy for each g. (Note that SOy is of type
A; x Ay and SOs3 is of type A;p.) O

Remark 3.3.6. If g is either A5 or of type C, then by Theorem 3.2.1, the reduced root system is of
rank 1 and the image of the color map is not contained in the valuation cone V. Thus there is a unique
G-equivariant completion of Oy, which is associated to the colored cone (V, @). In particular, Theorem
3.2.2 for g = Ag, C, (r > 2) follows.

3.4 Tangent Directions of Contact Conics

Next, we study geometry of contact conics. Namely, we find an equation satisfied by tangent vectors
of contact conics. Using this, we show that when g is not of type C, there is no smooth conic in a general
direction of D, while tangent directions of twistor conics dominate P(7,Z4) \ P(D,) by Theorem 3.3.4.
(Observe that if g is of type C, then Z; = v2(P?"*!) and there is a smooth conic in every direction. See
Subsection 3.1.1.)

In this section, every argument is based on Lie theoretic computation, and independent of spherical
geometry. For the sake of simplicity, we choose root vectors {E, € go} of g as in [14, Theorem 5.5, Ch.

ITI]. Namely, our root vectors satisfy
[Ew, E_o]=H,, VaeR

and
q(1-p)

N, 3)? =
(Na,8) 5

{a, @) Va, f € R satisfying o+ S € R
where

pi=min{meZ:B+maecR} and g¢:=max{meZ:B+maceR}.

Proposition 3.4.1. For nonzero v € D,, there is a line or a smooth conic tangent to v if and only if v
satisfies
[v, [v, [v, E,]]]=0
after identifying v with an element in g via the vector space isomorphism D, ~ g_1.
Proof. Note that [v, E,] # 0 in g whenever v € D, \ {0}. If [v, [v, [v, E,]]] =0, then

2
exp(t-v)-o=|E,+t-[v, Ep]+%-[v, [v, E,]]|€P(g), VteC.

It parametrizes a line if [v, [v, E,]] = 0. If [v, [v, E,]] # 0, then since E,(¢ g2), [v, E,](¢ g1) and

[v, [v, E,]](€ go) are linearly independent, it parametrizes a smooth conic.
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Conversely, assume that there is a line or smooth conic C' in Z; such that o € C and v € T,C.
Suppose that C is a line. For a € N(p), it can be easily seen that [E_,, [E_4, E,]] = 0, hence there
exists a line in direction [g_,] € P(D,). By Theorem 2.2.7, there exists p € L such that Ad,(v) € g_, for
some « € N(p) and the standard Levi subgroup L of P (i.e. T.L = go). Thus

Adp([vv [U7 Ep]]) € [g—ou [g—o” gp]] =0.

Thus we may assume that C' is a conic. Then since the exponential map defines a local isomorphism
near the origin
ToZg=g-o®g-1—>2Zg, Xr—exp(X)-o,

there is a holomorphic map F': ¢t — F(t) € g_2 @ g_; such that F(0) =0, F'(0) =v and
exp(F(t)) -0, VYinear 0eC
is a local parametrization of C near o. For all ¢ near 0 € C,

exp(F(t))-o= Ep+§;!(adp(t))k(Ep) .

Since F(t) ego®g-1,

C-H,eog (if k=1);
g20g1®g0 (if k=2);
(adp))*(E,) €4 go@ gy (i k = 3);
9-p (if k =4);
0 (if k > 5)

Therefore in the affine chart £, + (t® @azp 0a) = t® Batp 9o of P(g), exp(F (1)) -0 is given by

> (e (5,).
2

For sufficiently small ¢, we have the Taylor expansion of F’

[e1e) t7, . )
F(t) = Z EF(U’ @ ¢ g0 @ g1, FO v,
=1 ¢

and

| —

(adpy)"(Ep)

M=

o~

=
I

4 ti] +etig

2. i

1
k=141,...,452>1 K-aqleevig!

=t-[FY, E,]

[F(h)7 ,,,[F(ikﬂ)’ [F(ik)’ Ep]]]

1

1
t2~(fF(2)E +
G Bl g

[FO. [P, E,)))

1 1
ﬁ([F(l)a [F®, B+ [F®, [FD, E,]]) + 5

1 1,1 1 1
+t4' (ﬁ[F(4)7 EP] + 5(6[F(1)7 [F(3)7 EP]] + Z[FQ)» [F(2)a EP]] + E[F(g)a [F(1)7 EP]])

3 (1
v (bro, (PO, [P, [FD, 1))

v 6%([F(1), (FO,[FO, BN+ [FO, [FO, [FO,E )N+ [FO, [FO, [FO, E]])
PO, [FO, (7O, (1O, 5, ))))

+O(t%).
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The plane spanned by C in P(g) can be written as P(g, ® V') for some 2-dimensional subspace V' <
t®@a+p 0a- Then the intersection of the plane spanned by C' and the affine open subset £, +(t®®a4, 9o
is E,+V, and so all derivatives of ¥}_; %(adp(t))k(Ep) at t = 0 are elements of V. Consider the first
and second derivatives

(FO, E,), [FP, ]+ [FO, [FO, B,]]

Assume that the three vectors
E,, [FW,E,), [F® E]+[FY, [FV E,]
are linearly dependent in g. Since
[F®), Ey] = [v, B € 1~ {0},
[FO [FY, Byl e go,

and
[F(Q), Ep] eC-H,® g,

[FD B, and [F®| E,]+[FD, [FM| E,]] are linearly dependent, hence
[v, [v, E,]] = [F, [FM, B )] eC- H,.

Let us write [v, [v, E,]] = ¢- H, for some ¢ € C. Note that for every o € R with («|p) = -1, [H,, Eq] =

_ _{p.p)
(o, p)- Eo = =252 - E,,, hence

[y, 0] =20 (5.1

By the invariance of the Killing form under the adjoint representation,

c- (Hpv Hp) = <Hp’ [U7 [Uv Ep]]) = ([[Hw U]a U]v Ep> =0,

hence ¢ =0 and [v, [v, E,]] =0.
Thus we may assume that the three vectors are linearly independent. That is, the plane spanned
by C'is
P(E,, [F(l)v E], [F(Z)a E ]+ [F(l), [F(l)a E,]])

and its intersection with the affine open subset E, + (t® @4, ga) is identified with
V=C{FY, B, [F?, E,]+[FD, [FV, E,]]).
Now for each i > 1, write F() as
FO=x® 4205 = xOcg, 20ccC.

Note that (" =0 and X = v. Then the coefficient of ¢* in the above formula, which is proportional
to the third derivative at ¢ =0, is

1 1 1

GIFD B+ ((FD, [FD, B+ [FO, [FO, B )]+ [FY, [FO, [FO, B,]]]
1

= 7[X(3)7 Ep]
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Since it is contained in the vector space V, spanned by [v, E,] and ~® H, + [X®)| E,] + [v, [v, E,]],

the g_;-component is zero:

1 1 1
E$(2) [Hpa U] + Zx(z) [E—/)a [U7 Eﬁ]] + 6[1}7 [Ua [U7 Eﬁ]]] =0.

By the Jacobi identity,

[E-p, [v, Epl] = [v, [E-p, Ep]]
= [Hp’ U]

= —me v, (- Equation (3.1))

hence
3 )
['U, [’U, [Ua EP]]] = 5(/)1 p)(E .
In particular,
[v, [v, [v, [v, E,]]]] =0.
So the coefficient of * in the above formula is

1

Q[X(Ll)v Ep]
| —
€91
L CeYH + L, (X9, B]]« L x@, (XD B+ = [XD), [0, B,]]
24 O DL PR ’ PP 12 T
€go
1 1 1 .
+ Ex(d) [Hpv v] + gx@)([X(z)v [Efpv Ep]] + [Efpa [X(z)a Ep]]) + Ex(5) [Efp’ [v, Ep]]
1
+E (l:’l), [’U, [X(2)7 EP]]] + [U, [X(2)7 [1), El)]]] + [X(2)7 [U, [Ua EP]”)

€g-1

+%(33(2))2(—(@ PNE-, + %x@) ([v, [v, [E=p, EpNI] + [0, [E-p, [0, Ep]]] +[E-p, [v, [0, Ep]]]).

69—2(=9—p)

It is also a linear combination of [v, E,] and ~z? H,+[X® E,]+[v, [v, E,]], hence the g_,-component

is zero:

é(w@))Q(—(p, PNE-, + %x(g) ([v, [v, [E—p, EpNl] + [0, [E-p, [0, Ep]]] + [E-p, [v, [0, E,]]]) = 0.

By the Jacobi identity,
[E—pa [Ua [Ua Ep]]] =Y, [E—pa [U7 Ep]]]

[
[U7 [’U, [E—P7 EP]]]
0, (. Equation (3.1)).

Therefore z(*) = 0, which means that

(v, [o. [o, B, 111 = 5 (p. a0 =0.

Corollary 3.4.2. If g4 C,., r > 2, then there is no smooth conic in a general direction of D.
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Proof. By Proposition 3.4.1, it is enough to show that there is nonzero v € g_; such that [v, [v, [v, E,]]] #
0. Since g is not of type C, there is a long root a satisfying («|p) = (p|a) = -1 (for example, elements
of N(p) times —1). Then p+«a € Rbut p+2a ¢ R and p+ 2(-a-p) ¢ R. Also, a+ p is a long root.

Moreover, by our choice of root vectors,

1
(Na,p)2 = (N—a—p,p)2 = i(pa p).
Now a straightforward computation shows that F, + F_,_, does not satisfy the equation. O

Remark 3.4.3. Proposition 3.4.1 can be used to show that every smooth conic in the Gs-adjoint variety

Zga, is a twistor conic. Indeed, if g = G2, then one can prove that for v e g_q,
[v, [v, [v, E,]]] =0 if and only if [v, [v, E,]] =0.

It means that every contact conic is planar. However, Zg, does not contain a plane ([23, Section 4.3]),
hence a smooth conic on Zg, cannot be tangent to D. This fact is recovered in Theorem 5.2.4, as a

corollary of our main theorem (Theorem 3.2.2).

3.5 Classification of Borel Fixed Conics

In this section, we study B-fixed points of the compactifications Hy, Cy; and CoCgy, which can be
regarded as points corresponding to the most singular conics. Namely, we compute the isotropy groups
of the closed orbits of Hg, C4 and CoCj.

Recall that if g = C,. (r > 2), then Rg4,(Z,) is compact, and it contains a unique closed orbit
IG(2, C?") (Subsection 3.1.1). In other words, the space of conics contains a unique B-fixed point
represented by a contact conic whose stabilizer is P,,.

Thus we mainly consider the case where g is not of type C. Recall that if g is of type A, then
the three compactifications are all isomorphic to each other (Subsection 3.1.2), and so it is enough to

consider one of them.

Lemma 3.5.1. If g= A, (r >2), then Hy contains a unique B-fized point, represented by a reducible
conic

P(E,, Ep-a,) UP(E,, Esq,.).
Moreover, its stabilizer is Po, oz, a1, -

Proof. For simplicity, put £; :=P(E,, E,_,,) for i =1, r. Then the reducible conic £; UL, has stabilizer
Py. as,ar 1., (see Subsection 2.2.2), and in particular it is a B-stable conic.

To show the uniqueness, let C' be a B-stable conic on Zg such that [C'] € Hy. As we have seen in
Subsection 3.1.2, C' cannot be a double line. If C is a reducible conic, then each of its components is
B-stable. However, by Theorem 2.2.7, there only two B-stable lines on Zg, hence C = Ly u L,. If C
is smooth, then it contains o = [E,] (as o is a unique B-fixed point of Z; and by the Borel fixed point
theorem), and its projective tangent line at o is also B-stable. That is, £; is tangent to C' at o for some
i =1, r. This shows that for the plane P spanned by C, P n Zy contains C'u £;. Since Z; is defined
by quadrics in P(g), we see that P c Z;. This is a contradiction, otherwise double lines on P represent

points in Hy. O

Lemma 3.5.2. Suppose that g is not of type A or C, and let oj, be the unique element of N(p).
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1. The line Lp :=P(E,, Ey—q; ) is a unique B-stable line in P(g).
2. Any B-stable plane in P(g) contains the B-stable line Lg, and is of form
P(Em Ep—ajoa Ep—aj(, —,6’)
where § € S is a neighbor of aj, in the Dynkin diagram of g.
3. InP(g), there is no B-stable conic which is smooth or reducible.

Proof. If £ c P(g) is a B-stable line, then £ contains o = [E,] which is the unique B-fixed point in P(g).
Thus £ =P(E,, v) for some v € g. Moreover, since ¢, is the unique simple root which is not orthogonal
to p, p - a, is the maximum in R~ {p}. By b-stability of £, we have £ =P(E,, E,—,,)-

If P is a B-stable plane in P(g), then B acts on the space of lines on P, which is compact. Thus by
the uniqueness of Lp, P contains Lp and P = P(E,, E, o, ,v) for some v € g. By b-stability, we may
choose v as a root vector corresponding to a maximal element in R\ {p, p — o, }, which is exactly of
form p - o, — B for some neighbor 5 of o, in the Dynkin diagram. (In fact, p - 2a;, is not a root since
aj, is long hence (o, | p) = (p|aj,) = 1.)

For the last statement, consider two different lines £ and L5 such that their union £y U L5 is B-
stable. Since B is irreducible, each £; should be B-stable, hence £, = L5 = Lp, a contradiction. Now
assume that there is a B-stable smooth conic C in P(g). Then the plane spanned by C'is also B-stable,
hence there is some neighbor § € S of a;, such that the plane P := P(E,, Ep-v;ys Ep-a,,-p) contains
C. Moreover, o € C' and the line Lp is tangent to C' at 0. Therefore in P, C' is defined by a quadratic
equation

2 2
117 +a22%5 + ToTg + A12X1T2 = 0

for some a;; € C where the homogeneous coordinate on P is chosen so that [0 : 21 : @2] = [moEp +
1By, +12E, o, - 5]. Then the above equation should be B-stable up to scalar multiplication, however
a simple computation shows that for each H € t, exp(—H) sends the equation to

0=ay (9616(”‘0‘J'0)(H))2 + age (che(”“”o‘5)(H))2

4 (acoep(H)) (xQG(P—ajo—ﬁ)(H)) +ays (xle(p—ajo)(H)) (xQe(p—ajo—B)(H)) ]
This implies that a1 = ase = a12 = 0, which is impossible. O]

It is not difficult to compute all B-stable planes in P(g) and their stabilizers in G using Lemma 3.5.2.
For example, given a B-stable plane P = P(E,, Ep o, Ep,oé].o,ﬁ)7 it can be shown that its stabilizer is

a parabolic subgroup P; where I c S is
(N (o) UN(B)) N {ey,, B} if B is long,

and
(N(ajy) UN(B)) N {aj,} if B is short.

(Alternatively, I is a set of v € S such that p—-a;, —vye R~ {p—aj, - B}, or p—a;, —B—y€R.) These
are listed in Table 3.5. We also indicate whether a plane is contained in Zy or not, by the following

observation: A B-stable plane P(E,,, Epo;ys Ep-ay, _g) is contained in Z if and only if 5 is a long root.
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’ g ‘ B-stable plane P ‘ Stabg (P) ‘

B, (2 4) P Bros: Bpror-os) P,
]P)(EP’ EP’CQ’ EP*OCQ’O“S) Pa17a4
By P(Ep, Ep-ays Ep-ay-as) Pl
P(Ep, Ep-ay Ep-as-as) (§ Zg) | Poi,as
b, (> 6) | FEo Eros Eosoa) P.,
P(Ep, Ep-as, Ep-as-as) Pay, a4
N P(Ep, Ep-oys Epoy-ocs) P,
P(E), Epoyr Epoyos) Pay caon
P( 03 p 29 Eﬁ—m—(m) P%v%
D, P(E P pfaw Ep,ag,%) Pu, oy
P(Ep; Ep-az;, Ep-as-a) Pai,as
’ Ee ‘ P(Ep, Ep-aes Ep-as-as) ‘ Pos, a4 ‘
5 | beliea) | Pa
| B | P(E, By, Bpar- az) | P, |
| P | P(EpByanBrara) | Pay |
| G [ P(Ey Bras Epor-os) (£29) | Pay |

Table 3.5: B-stable planes in P(g) and their stabilizers.

This is because, since

|p_ajo _5|2 _ |p|2 + |Oéjl)|2 + |ﬁ|2 _2(p7 ajo) _2<p7 B) +2<ajoa ﬁ)
|B/? B[

= +1+(aj[B) (Aaglp) =1, (p, B)=0)

=1 (-[32, Problem 8, §4.2]),

f is short if and only if p - «j, — B is short, which is equivalent to saying that [E,-o, -s] # Z;. Then the
observation follows, since if P(Ey, Ep-q; , Ep-a;,-5) ¢ Zg, then their intersection is a B-stable double

line supported on L5 by Lemma 3.5.2.

Remark 3.5.3. The stabilizers of B-stable planes contained in Z; are also given in [23, Theorem 4.9].
On the other hand, comparing Table 3.5 and Theorem 2.2.7, we see that the stabilizers of B-stable planes
not in Zy are equal to Stabg(Lp).

Corollary 3.5.4. Suppose that P is a plane on Zy. Then the restriction map Stabq(P) - Aut(P) is

surjective.

As a consequence, the G-conjugacy class of a planar conic is only depending on the G-conjugacy
class of the plane spanned by it and its scheme structure. More precisely, if C; is a planar conic on a
plane P; ¢ Z; for ¢ = 1, 2, then C; and C5 are G-conjugate to each other if and only if P; and P, are

G-conjugate planes and C; are Cy isomorphic as schemes.

Proof of Corollary 3.5.4. Recall that if g is of type C, then Zg = v2(P?"*1), hence there is no plane on

Zg. If g=A,, r>2and P is a plane on Zj, then conics on P are either (2, 0)- or (0, 2)-conics, since
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a double line cannot be a (1, 1)-conic (see Subsection 3.1.2). Thus in the notation of Subsection 3.1.2,
P is contracted by Z; - P(Vi) or by Zg - P(V;.), and so the statement follows from the discussion in
Subsection 3.1.2.

Now we may assume that g is not of type A or C. Since the space of linear subspaces in Z; is
the disjoint union of rational homogeneous spaces ([23, Theorem 4.9]), we may assume that P is B-
stable. Then by Lemma 3.5.2, we can write P =P(E,, E, Ep o, _g). Observe that the Lie algebra
of Stabg(P) contains 9-a;, + 9-8 + -a;,-p by Table 3.5. Moreover, with respect to the homogeneous

—Qjg

coordinate [z : y : 2] = [2E, + yEyo, +2E,a, 3] on P, exp(g-a,, + §-5 + 8-a,,-5) (respectively,
exp(ga,, + 85 + 8a,,+5)) generates all lower (respectively, upper) triangular matrices of which diagonal
elements are 1 in Aut(P) ~ PGL3. Since the maximal torus T is sent to the group of diagonal matrices,
it follows that Stabg(P) — Aut(P) is surjective. O

Corollary 3.5.5. Assume that g is not of type A or C.
1. Cq4 has a unique closed G-orbit ~ G[Stabg(Lp) which is the locus of double lines.

2. For a closed G-orbit O c Hy, let Po(c P(g)) be the plane spanned by a B-fized point in O. Then
the assignment O = Po is a bijective map from the set of closed G-orbits in Hy to the set of
B-stable planes on P(g). Under this map, the closed orbit sent to a B-stable plane P c P(g) is
isomorphic to G/Stabg(Lp) N Stabg(P).

3. For a closed G-orbit O c CoCy, let x € O be a B-fized point and Po the plane spanned by the
conic CH(x)(e Hy). Then the assignment O ~ Po defines a bijective map from the closed G-
orbits in CoCy to the B-stable planes in P(g). Furthermore, if Po =P(Ey, Ep-o; s Ep-a,,-5) and
Aut(Po) is identified with PG L3 with respect to the ordered basis {Ej, Ep-a;,, Ep-a;,-p}, then
Stabg(x) is the preimage of the subgroup of upper triangular matrices under the restriction map
Stabg(Po) - Aut(Po) ~ PGLs.

Proof. 1. Since closed orbits in Cy4 and Hy are projective, by Lemma 3.5.2, closed orbits must consist

of double lines. Thus the first statement follows from Theorem 2.2.7.

2. For each closed orbit O in Hg, consider its unique B-fixed point. This point is represented by a
double line, say Lo, in Zg such that (Lo)™d = L by Lemma 3.5.2. Now define Pp to be the unique
plane in P(g) which contains Lo as a closed subscheme. Then the map O — Pp is injective. Since
the stabilizer of Lo is equal to Stabg (£ g)nStabg (Po), we see that O ~ G/Stabg (Lp)NStabg(Po).

For bijectivity, observe that the injective map O — Pg is surjective if there is only one B-stable
plane in P(g), which is the case when g is of an exceptional type. On the other hand, if every
B-stable plane in P(g) is contained in Zg, i.e. when g # B3, G, then every B-stable double line in

P(g) represents a point in Hg, hence the map O ~ P is surjective.

Thus it suffices to show the surjectivity when g = B3. Let us index simple roots of G5 and B3 so

that their Dynkin diagrams are given by

e for Go, and oo~ for Bs.
ay ap B B2 B3

For roots a € Rg, and 8 € Rp,, we denote by (G2), and (Bs)g the corresponding root spaces.
Root vectors are denoted by E, € (G2), and Eg € (Bs)g as before. Then there is an embedding
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G5 = Bj as a Lie subalgebra so that

(G2)ay; Eg, + ci0Eg,;

(G2)as; Eg,;

(G2)asrass are generated by Ebiepa + c12- Epyeps; respectively,
(G2)201 +as; Eg, 1285 + Co1* Ep 1,455

(G2)30;+a2} Epy+5+265

(G2)301+20s Epg, +28,+2855

for some nonzero constants ¢;; € C*. See for example [26, p. 84].

Now consider the induced embedding between adjoint varieties Zg, < Zp,. Since the ideal of
Zg c P(g) is generated by a system of quadrics, by Corollary 3.5.5 and Table 3.5, the scheme-

theoretic intersection of Z, and the plane

Pi= P(E3a1+2042; E3or+as E2a1+a2) in IP>(GY2)

=P(Ep,+28,+285> Fp1+82+2855 Epyvaps + 21 Epy1p,48,) in P(B3)

is a double line which represents a point in Hg,, hence a point [Zg, Nseh P] in Hp,. Furthermore,

the T-orbit closure of [ Z¢, Nsch P] contains two boundary points, which are conics spanning planes

P = P(E51+2ﬁ2+2ﬁ37 Eﬁ1+ﬁ2+253» Eﬂ2+253)7 and Py := ]P)(E51+2ﬁ2+2537 Eﬁ1+ﬁ2+2537 EL‘31+B2+B3)7

respectively. These are the B-stable planes for g = B3 in Table 3.5. Since P2 ¢ Zp,, the only
conic on P, which represents a point in Hp, is the set-theoretic intersection Py Ngeny Zp,. It is a
B-stable double line, hence Pa = Pg.[p,n.., Zp,]" On the other hand, since Py c Zp,, P is the plane
corresponding to the orbit of the B-stable double line on it.

3. Recall that the space of complete conics on P? contains a unique closed PGLs-orbit, and its
isotropy group is a Borel subgroup of PGLs. Then it suffices to observe that the subgroup of
upper triangular matrices is contained in the image of the restriction map Stabg(Po) — PGL3. In
fact, this observation implies that the assignment O — Pp is injective, and its surjectivity follows
from the second statement.

O

Using Corollary 3.5.5, one can easily compute the isotropy groups of closed orbits. In the case of Cg,
the isotropy group of the closed orbit is PN(%'O) by Theorem 2.2.7. For Hy and CoCg, we summarize
the result in Table 3.6. Here, O means a closed G-orbit either in Hy or in CoC,, and Pp denotes the
B-stable plane corresponding to O in the sense of Corollary 3.5.5. In the third and fourth columns, the

isotropy groups of O containing B are given.
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‘ Isotropy group of O c Hy

Isotropy group of O c CoCj4 ‘

g B-stable plane Po
B, (r34) P(Ep; Ep-ass Ep-on-as) Poy, as Py, az, 03
P(E,, Ep-as, Ep-as-as) Py as, 04 Py as,as, a4
Bs P(Ep, Ep-ay; Ep-ai-as) Pay,as Pai,as,a5(= B)
P(E,, Ep-asy, Ep—as-as) Py, o Py as,a3(=B)
D, (r36) P(E,, Ep-asy, Ep—ai-as) P as Pu, as,as
P(Ey, Ep-ass Ep-as-as) Poy oz, 04 Poy,as, a5, 04
Ds P(Ep, Bp-ass Ep-ar-as) Pay, as Py, az, a3
P(Ep, Ep-ass Ep-ar-as) Pay a3, 04,05 Pay 0z, 05,04, 05 (= B)
P(Ep, Ep-az, Ep-ai-as) Po, as,04 Pay,az, 03,0, (= B)
Dy P(Ey, Ep-ass Ep-as-as) Pao, g, 04 Poy,as,a5,04(= B)
P(E,, Ep-as, Ep-as-as) Py s as Poy s, as, 04 (=B)
| B | P(E) Bpag Brasad) | Pos.as.as | Pag,a5,00,00 |
’ Er ‘ P(E), Ep-as, Ep-as-as) ‘ Poy,as ‘ Poy,as,as ‘
| B | P(E,Epan Bpar-ay) | Pay.as | Par.ay. o |
| B [P Brai Bray-od) | Pag, o | Pa,as.01 |
| G | P(Ep By Bponas) | Pa, | Pay00(= B) |

Table 3.6: Isotropy groups of the closed G-orbits O in Hy and in CoCj.
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Chapter 4. Colored Fans of Spaces of Conics

This whole chapter is devoted to the proof of our main theorem: Theorem 3.2.2. For the proof,
we use the results of the previous Chapter 3, especially on the open orbits and the closed orbits of the
compactifications Hy, Cy and CoCy, to compute the colored fans of their normalizations.

To do this, recall the notation given in Section 3.2. Namely, we consider a maximally o-split torus
T’ =¢g-T-g~! and a Borel subgroup B’ = g- B-¢~! such that for a positive root o with respect to B’ such
that @ = a|T{ # 0, then () < 0. Also recall the expression of the generators ~; of the Weyl chamber

-V in terms of the restricted simple coroots (S5 )" ={A{, ..., A5 }:
_ o
o If g=A, (r>4), then R, =BC> and
"= )‘\1/ + >‘\2/>
Yo =AY +2)y
where AY(= A}) and Ay (= \Y /2) are basis elements of (Rp,)" (see Remark 2.3.12).
o If g= Aj, then R’Og = (5 and
7= /\\1/ + )‘\2/7
1
Yo = *)\\1/ + )\;
2
e If g= Ay or Cp (r > 2), then Rbg = BCy, and v = y; = \Y where \V(= A\V/2) means the basis
element of (R, )" (hence (A, A¥) =1; see Remark 2.3.12).
e If g= Bys4 or D35, then R’Og = B4 and
1
Y1 = )\\1/ + A\Q/ + >\z°)/ + iAX,
Y2 i= A+ 205 + 225 + ),
g = AY 4 208+ 3AY + ng,
4= A+ 205 + 3 + 2.
e If g= Bs, then Rbg = B3 and
1
v1i=AY A+ 5)\})/,
Yo = )\\1/ + 2)\5 + )\g,
3
Y3 =AY + 20y + 5)\5
e If g= Dy, then R] .= D, and
1 1
M= A+ §>\§ + 5/\21/5
Yo =AY 4 2A3 + A5 + ),
1 1
3 = 5){ + Ay + Ay + iAX’

1 1
Yy i= 5)\\1/ + A+ 5)% +A).
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e If g is of an exceptional type other than G, then Rbg = F and

Y1 5= 20 + 3y + 4N + 2)],
72 := 3A] + 6y + 8Ny + 4],
73 1= 2A7 + 4Ny + 6AY + 3\),
vai= A 4205 + 3y + 20

o If g=Gs, then R , =G2and

Y= 20 +3X5, 2= A + 205,

4.1 Colored Cones of Simple Embeddings

Consider a G-variety X with an open spherical G-orbit and let Y c¢ X be a closed G-orbit which is
projective. If X admits a G-linearized ample line bundle, then by Proposition 2.3.7, for the normalization
7 X" » X, 771(Y) is a closed G-orbit in X™°". Moreover, since Y is simply connected and the
restriction 7 : 771 (Y) - Y is a G-equivariant finite morphism, we have 7 }(Y) 2 Y.

Now assume that the open orbit of X is isomorphic to Oy, and put
Xy ={ze X" :G-zon (Y)}.

Then Xy is open in X", and in fact Xy is a simple Og-embedding with a unique closed orbit 7= (Y) ~
Y. In the notation of Section 3.2, for a B’-color D € D(Oy), since Stabg (D) is a parabolic subgroup
containing B’, we can write

Staba(D) = Ppy, I'(D)c S,
If I(D) := I'(D) o Ad, and wy is a representative of the longest element in W with respect to B, then

since PI’,(D) =g Prp) g7, Lemma 2.3.6 implies that

(the isotropy group of Y containing B) = N (wo - Pr(py cwyt) (4.1)
DeD(04)NF(Xy)

Remark 4.1.1. 1. I'(D) is explicitly given in Remark 2.3.12 when g = A,., r > 2. In other cases, by
Theorem 2.3.11 and the discussion in Section 3.2, the color map € : D(Oy) — %(S’;)V is bijective
and

’ l AN
I(Dl-):{ajeS a;—)\z}
where D; is the color e }(\Y/2).

2. The action of wg on the set of roots is well-known. See [6, PLATE I-IX]. Indeed, under Ad,,,

a; €S is sent to —7(a;) where 7:.5 — S is a map given by the following diagram involutions:

* Ho=Az (r=1): W/

L] Ifg:A2r+1 (T‘Zl): o o

1\\\2%%1

e Ifg=Dorpy (7’22): o—o— <<>
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e Otherwise, 7 = id.

Since our compactifications are equipped with G-equivariant finite morphisms

Cy = Chowy 2(P(g), Op(q)(1))
— {hypersurfaces of degree (2, 2) in P(g*) x P(g*)}
- P ((Sym®g)®?),

H — Hilboys1 (P(9), Op(g)(1))
= Gr (Sym™ (g*), M)

cP (7\ SymN(g*))

for some positive integers M and N (see [20, Chapter I]), C,; and Hy are equipped with G-linearized
ample line bundles. Since CoCy ¢ CoC(P(g)), CoC,y also admits a G-linearized ample line bundle.
Thus the previous discussion can be applied, and in particular, by Proposition 2.3.7, we may identify
orbits in Cy (respectively, in Hg and in CoCy) with orbits in its normalization.

Now the colored cone of X™°" can be easily computed in the following cases:

1. The case where the color map €: D(Oy) — %(S;)V is injective and X is simple. This assumption

is satisfied in the following cases:

(a) The case where g is not of type A or C, and X = C,. Indeed, € is injective by Theorem 2.3.11
and Theorem 3.2.1, and C{°" is simple by Corollary 3.5.5. For example, if g = B, with r > 3,
then we have

Stabg(LB) = Pay,ays  Li={a:}, Ady, =—id

by Theorem 2.2.7, Table 3.1 and [6, Plate II]. It means that (wq - Py, -wg!')™ = P,, for each 1,

hence

nor _ {DQv D4} (lf r2 4)7
F(C (zBT»—{ o i

After similar computations using the following list of the isotropy groups and (wg- Py, -wg')~,
we obtain Table 3.2.

e g=D, with r >6:

StabG(ﬁB):Pal,asa (U)O-PL;~’(,l)61)_:P)C”7 vi:l’ 27 3’ 4
. g:D5:
P, ifi=1, 2, 3;
Stabg (£ :Poz s W'P.-w_l_: i) ) St
G( B) 1,03 ( 0 I; 0 ) {Pa4,(¥57 if 1 = 4.
. g:D4:

Stabg(LB) = Pay.ag.ons  (Wo - P, -wy') = Pa,, Vi=1,2 3 4.

7
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Stabg(ﬁg) =P,
(wO'Ph'w(;l)_:Pahas, (wO'sz'wal)_:Paz,mu

(wo - Pry -w61)7 =P,,, (wy-Pp, ~w61)7 = Pog-

o g:E7:
Stabg([,B) =P,,,
(wo - Pry~wg')™ = Pay, (w0 Pry-wg')™ = Pay,
(WO'Plg'w61)_=Pa5» (wO'PLL'wal)_:PaG'
. g:Egl
Stabg([,B) = Pa2,
(wO'Pll'w61)7:POé7v (wO'PIQ'w61)7:Pa37
(wO'Pfs'wal)_:Ple? (wO'PI4'w61)_:POt1'
. g:F45
Stabg(ﬁB) = Pa3,
(wo-Pr,-wy') =P, Vi=1,..., 4
L] g:Ggl

Stabg([,B) =Pa1,
(wo-Pr,-wy') = P,,, Vi=1,2.

(b) The case where g is of exceptional type and X is either Hy and CoCy. In this case, € is
injective by Theorem 3.2.1 and Theorem 2.3.11, and X is simple by Corollary 3.5.5. As
before, using Table 3.6 and the above list of (wq - Py, - wg')~, we obtain Tables 3.3-3.4 for

exceptional Lie algebras.

2. The case where g = A, for r >4 and X = C4,. Recall that in this case, C}°" ~ H}’" ~ CoC’};”" by
the discussion of Subsection 3.1.2. Furthermore, C'{°" is a simple O4,-embedding with a unique

closed orbit G/Py, as,ar1,q, by Lemma 3.5.1. By the equation 4.1 and Remark 2.3.12, we have
F(CY) =2,

hence
C(CLT) =V = Qs0(-71, —72)

since C}”" is projective.

Together with Remark 3.3.6, Theorem 3.2.2 follows, except when g is Az or of type B or D. These

are covered in the rest of this chapter.
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4.2 The Case of Orthogonal Lie Algebras

In this section, we compute the colored data of Hy”" and COC;’OT for g of type B or D, using the

colored cone of C{°". First, let us prove the following lemma.

Lemma 4.2.1. Assume that g is not of type A or C. In Cy°", each G-orbit represented by planar

reducible conics corresponds to a colored face of codimension 1 in the colored cone of Cg°".

Proof. Let O c Cy be an orbit represented by planar reducible conics, and P a plane contained in Zg
such that reducible conics in P represent points in O. Recall that O is not a closed orbit, since g is
not of type A or C' (Corollary 3.5.5). Since non-planarity and smoothness are open conditions, every
boundary point of O should be represented by a planar reducible conic or a double line. If a planar
reducible conic C represents a boundary point of O, then the plane spanned by C' is in the closure of
the G-orbit containing P in the space of planes in Z;. However since the space of planes in Zj is the
disjoint union of rational homogeneous spaces by [23, Theorem 4.9], the plane spanned by C is indeed
G-conjugate to P, which is a contradiction to Corollary 3.5.4. Therefore the boundary of O consists of
double lines, and the same statement holds for 771(O), which is a G-orbit by Proposition 2.3.7, where
m: Gy — Gy is the normalization map. Since double lines form the unique closed orbit in Cg, the

desired statement follows. O

As shown in Corollary 3.5.5 and Table 3.6, Hy*" and CoCy”" contain at least two closed G-orbits
when g is of type B or D. For a closed G-orbit Y of H{*" (of CoC°", respectively), define

Hy ={zeH;":Y cG -2}, (CoCy:={reCoCy”:Y cG z}, respectively).

As remarked in Section 2.3, it is a simple Oy embedding with its unique closed orbit Y, and the colored
cones of Hy (of CoCy, respectively) for all closed orbits Y are exactly the maximal elements of the

colored fan of Hy" (of CoCy“", respectively).

4.2.1 High Rank Cases

Now assume that g = B, (r > 4) or D, (r > 5) so that the restrictive root system is R, = By
(Theorem 3.2.1). By Corollary 3.5.5 and Table 3.6, Hy°" has exactly two closed orbits and they are
represented by planar double lines. Thus the colored fan of Hy*" consists of two maximal colored cones
and their colored faces by Lemma 2.3.4. For i = 1, 2, let Y; be the closed orbit in Hy°" represented by
double lines on the ith plane P; in Table 3.5 (in the row g). By Table 3.6 and the equation (4.1) in
Section 4.1, we have

F(Hy,) ={Ds, Dy}, F(Hy,)={Ds}.

Let O; ¢ C{°" be the G-orbit containing planar reducible conics in the ith plane in Table 3.5 for
i=1, 2. By Lemma 4.2.1, each O; corresponds to a colored face of dimension 3, and such a face contains
extremal rays generated by —vys and —v4 by the list of colored faces in Section 3.2. Note that if a 1-
dimensional colored face Q¢ - (—7) of Cg" is contained in the colored face corresponding to O; for some
i, then the G-stable divisor corresponding to Qs - (=) contains O; in Cg?". Since O; is contained in
the open subset where the morphism FC™" : Hy" — C{°" is an isomorphism, and Y; is contained in

the closure of its preimage under F'C™°", the strict transform of the divisor corresponding to Qso - (—7)
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contains Y;. In other words, the colored cone of Hy, contains Q¢ - (=) as an extremal ray. Therefore

the colored cone of Hy, contains
Cri=Quo{—72, =74, Az Ai) (3 =73 =-ma + A{/2)

and the colored cone of Hy, contains Qso{—7v2, =74, Ay). If =y, is contained in the colored cone of Hy,,
then it contains the valuation cone V), which is a contradiction since Hy, is not complete. Hence the

colored cone of Hy, contains
Co = QZ()(_FYlv 72, V4, A;)

By the definition of a colored fan, especially 1(a) and 4(b) in Definition 2.3.2, (C1, {D2, D4}) and
(Ca, {Ds}) are colored cones of Hy, and Hy,, respectively.

Similarly, by Corollary 3.5.5, CoCy" contains two closed orbits, say Y;, such that CH"™"(Y;) = Y;
for i =1, 2. As before, the equation 4.1 and Table 3.6 imply that

F(CoCy,) ={Ds}, F(CoCy,)=2.
Furthermore, since we have a morphism CH"°" : CoCy*" — H°", we have
C(CoCy)cC; i=1,2.
Since CoC°" is complete, and since
CinV=Qs0(-v2, =73, =74, =71 = 73),  C2nV =Qs0(-71, =72, =74, =71 = 13),
we see that
Qx0(=72, =74 =71 =73, A1) € €(CoCy,),  Qz0{~71, =72, =74, =71 = 73) € C(CoCy,).

Since the union of the cones Qso{—v2, =74, =71 — V3, Ay) and Qso(-y1, =2, Y4, =71 — ¥3) contains the

valuation cone V = Qso{(-71, ..., —y4), we conclude that the equalities hold.

4.2.2 The Case of D,

Next, we compute the colored fans when g = Dy, i.e. when R’Og = D,. By Corollary 3.5.5 and
Table 3.6, Hy" has three closed G-orbits, and each of them consists of planar double lines. For each
i€ {1, 3,4} and the colored face

Cll = QZO(_’Vj ] € {17 2; 37 4} N {7’}>

of the colored cone of C7", there is a B-stable plane P; in Zp, such that planar reducible conics in P;

belong to the G-orbit in C5”" corresponding to C; by Corollary 3.5.4 and Lemma 4.2.1.
For each i, let Y; be the closed orbit in H7" containing double lines in P;. Since all of Y; have same

isotropy group Pa,, as, a4, the equation (4.1) in Section 4.1 shows that
F(Hy,) = F(Hy,) = F(Hy,) = {D:}.

As in the previous section, since the strict transform (via FC™°") of the divisor corresponding to each

extremal ray of C] contains Y;, the colored cone of Hy, contains
Ci = Q20<C1{7 )‘\2/> = QZO(_"YJW )‘g ] € {17 27 33 4} N {Z}>
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A straightforward computation using the relation —7y; +2y9 —v3 -4 = Ay shows that for Zle a;-(—v;) €V,
a; € Q5p, we have
4 C, if and only if a1 < a3 and a1 < ag;
Y a;-(—y) € C3 if and only if a3 < a; and a3 < ay;
= C, if and only if a4 < a1 and a4 < as.
By 1(a) and 4(b) in Definition 2.3.2, the colored cone of Hy;, is (C;, {D2}) for each i.
Similarly, by Corollary 3.5.5, CoC;)" contains three closed orbits Y; such that CH""(Y;) = Y; for
each i = 1, 2, 3. Since the isotropy group of Y; is B by Table 3.6, by the equation 4.1, we have

F(CoCy,) =0, Vi=1,2,3.
Furthermore, since CH"" : CoCly — H}" sends CoCy, to Hy,, we have
C(CoCy,) < C;.
Since CoCy)" is projective, we conclude that

Qso0(=725 =3, =74, —11 =13 —4) (i=1)
C(CoCy,) =CinV =1 Qso{-71, =72, ~1a» —11 — V3 -71) (i=2)
Qxo0{-715 =72, =73, 11 — 13 —7a)  (i=3).

4.2.3 The Case of B;

Finally, consider the case where g = B;. By Corollary 3.5.5, HE" contains two closed orbits, say Y;

and Y3. By the equation (4.1) in Section 4.1, the colors of Hy, and Hy, are given by
‘7:(HY1) = ‘7:(HY3) = {DQ}v

since Py, a4 is an isotropy group of each of ¥; and Y3 (Table 3.6).

For each ¢ =1, 3, let O; be the G-orbit in C%’" corresponding to the colored face Qso{-7i, —72)- If
one of the closed orbits, say Y}, is contained in the closures of the preimages of both O; and O3 under
FC™", then the colored cone of Hy, contains Qso(—7y1, —y2, =73, Ay ), which is a contradiction since Hy,
is not complete. Therefore we may assume that for each i = 1, 3, Y; is contained in the closure of the

preimage of O;. In other words, the colored cone of Hy, contains
Ci = Quo{~vi, =72, A3)-

By 1(a) and 4(b) in Definition 2.3.2, (C1, {D2}) and (C2, {D2}) are maximal colored cones in the colored
fan of H".

By Corollary 3.5.5, CoC%" contains two closed orbits Y;, and we have CH™"(Y;) =Y; fori=1, 3.
By Table 3.6, the isotropy groups of Y; is B, hence by the equation 4.1,

f(COCYl) = f(COCYs) =d.
Since CoCl)" is projective, and since CH"" : CoCl." -~ HE" sends CoCy, to Hy,, we have

Qso{-71, =72, 11 —3) (i=1)

C(COC{G_)ZCZ'OV: .
Qso{-2, =73, -1 —73) (i =3).
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4.3 The Case of Special Linear Lie Algebras

In this section, we compute the colored fan in the case g = Az to complete the proof of Theorem
3.2.2.

Suppose that g = A,, r > 2. We use the notation of Subsection 3.1.2. Namely, g = sl(V') for a
vector space V' of dimension r + 1, and Z; is equipped with two projections p := p; : Zg - P(V) and
q:=pr: Zy > P(V"). Recall that Hy*"(~ Cy*" ~ CoC®") parametrizes (1, 1)-conics. That is, for a
conic C representing a point in Hy, C is a reduced scheme, and p(C) and ¢(C) are lines on P(V') and

P(V*), respectively. Thus we have a G-equivariant morphism
pxq:Hg—>Gr(2, V) xGr(2, V"), [C]~ ([p(C)], [¢(C)]).

Observe that Gr(2, V*) can be identified with Gr(r—1, V). Thus under the diagonal G = SL(V)-action,
the orbit structure of Gr(2, V') x Gr(2, V*) ~ Gr(2, V) x Gr(r - 1, V) is given as follows:

o If r=2 (i.e. dimV =3), then Gr(2, V') x Gr(1, V') consists of the following two orbits:

— An open orbit
{([WQ], [Wl]) € GI‘(Q, V) X GI‘(l, V) : W2 n W1 = 0}

— A unique closed orbit of codimension 1
{([Wa], [W1]) € Gr(2, V) x Gr(1, V) : Wo o W1 }(~ G/B).

o If r=3 (i.e. dimV =4), then Gr(2, V') x Gr(2, V') consists of the following three orbits:

— An open orbit
{([W2], [W3]) € Gx(2, V) x Gx(2, V) : W2 n W3 = 0}

— A codimension 1 orbit
{([Wa], [W3]) e Gr(2, V) x Gr(2, V) : dim(Wo n W3) = 1}.
— A unique closed orbit of codimension 4
diag(Gr(2, V)) = {([Wa], [W3]) € Gr(2, V) x Gr(2, V) : Wy = W3} (= G/ Pay).
o If r>4 (ie. dimV 25), then Gr(2, V') x Gr(r — 1, V) consists of the following three orbits:
— An open orbit
{([W2], [W,-1]) € Gr(2, V) x Gr(r—1, V) : Won W,y = 0}.
— A codimension 1 orbit
{(W2], [Wra]) € Gr(2, V) x Gr(r - 1, V) s dim(Wo n Wiy ) = 1}
— A unique closed orbit of codimension 4

FIQ,T,l(V) = {([WQ], [Wr—l]) € GI‘(Q, V) X GI‘(T - ]., V) : W2 C Wr,l}(ﬁ G/Pama“l).
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In each case, Gr(2, V) x Gr(2, V*) contains an open G-orbit O and a unique closed G-orbit. We
claim that p x ¢ is bijective over O. That is, for 2-dimensional subspaces Wy ¢ V and Uy c V*, if
([W2], [U2]) € O, then there is a unique [C] € Hy such that p(C) = PW; and ¢(C) = PUs. Indeed, since
([Wa], [Uz]) € O, for every w € Wy, we have (w, Us) # 0 where (, ) : VxV* - C is the natural pairing. If
{u1, ug} is a basis of Us, then since each u; defines a hyperplane in V| there exist wy, we € W5 such that
(w1, u2) = (wo, u1) = 0. Since (w;, u;) # 0, we may assume that (w;, u;) = d;;. Now in Zg ~Fl; .(V), we

have

p_l(]PWQ) N q_l(]PUQ) = {[(a1w1 + G,Q’U}Q) ® (b1u1 + b2u2)] L ag, bz € (C, (a1w1 + agwa, b1U1 + bgUg) = O}
= {[(a1w1 + CLQIUQ) ® (b1u1 + b2u2)] L ag, bl € (C, a1b1 + a2b2 = 0}

ol 1
~ (a1by +agby =0) in P, xPp 4,

which is a smooth conic. Hence the claim follows, and in particular, p x ¢ induces a birational morphism

Hy" —» Gr(2, V) x Gr(2, V™).

Now suppose that g = Az so that dim V' = 4 and we have a G-equivariant birational morphism
pxq:HY - Gr(2, V) xGr(2, V') = Gr(2, V) x Gr(2, V).

Recall that H}?" and Gr(2, V') x Gr(2, V') have unique closed orbits, isomorphic to G/B (Lemma 3.5.1)
and Gr(2, V) ~ G/P,,, respectively. In particular, p x ¢ is not an isomorphism.
On the other hand, by the equation (4.1) and Remark 2.3.12, the set of colors of Gr(2, V) xGr(2, V)

is one of
{Dl}; {D17D;}7 {DDDE}

However, since V, A} and Ay spans a cone which is not strictly convex, the colored cone of Gr(2, V') x
Gr(2, V') must be

(Qs0(-71, AY), {D1}).

Similarly, the set of colors of H}%" is one of
o, {D3}, (D3}

By the existence of the morphism p x ¢, we have F(H’>") c {D; }, which means F(H'{°") = @. Therefore
the colored cone of H" is (V, @).
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Chapter 5. Applications

In this chapter, we present several applications of our main Theorems 3.2.1 and 3.2.2.

5.1 Classical Descriptions

In Subsection 3.1.1, we see that the space of conics on Zy for g of type C is isomorphic to the
Grassmannian. In this section, we describe the space of conics in terms of projective geometry, especially

when g is of type A or Gs.

5.1.1 Type A: Blow-up of the Product of Grassmannians

Suppose that g = A, = sl[(V), » > 2. In Section 4.3, we have seen that there is a G-equivariant

birational morphism
pxq:Hg” > Gr(2, V) xGr(2, V"), [C]~ ([p(C)], [a(C)]),

and Gr(2, V) x Gr(2, V*) is a simple Og-embedding with unique closed orbit Fly ,_1 (V') ~ G/P,, o, -
Moreover, if r = 3, then its colored cone is (Qso{—71, AY), {D1}) by the discussion in Section 4.3. Sim-
ilarly, by the equation 4.1 (Section 4.1) and Remark 2.3.12, one can show that the set of colors of
Gr(2,V)xGr(2,V*) is @ if r =2 and {D; } if r > 4. Therefore its colored cone is

(Qs0(—7), @) ifr=2,and (Qso{-71, A}), {D1}) ifr>3.

In particular, if 7 = 2, then the morphism H{°" — Gr(2, V') x Gr(2, V*) is an isomorphism. If r > 3, then
the colored cone (V, @) defines a unique complete Oy-embedding admitting a G-equivariant birational
morphism to Gr(2, V) x Gr(2, V*), which is not an isomorphism. By Theorem 3.2.2, we obtain the

following proposition.
Proposition 5.1.1. Suppose that g = sl(V') for a vector space V' of dimension r +1 > 3.
1. If r =2, then Hy°" is isomorphic to Gr(2, V') x Gr(2, V*).

2. If r > 3, then Hy°" is isomorphic to the blow-up of Gr(2, V) x Gr(2, V*) along the partial flag
variety Fly .1 (V).

Remark 5.1.2. If g is of type A, then H°" is smooth by Proposition 5.1.1, and its colored cone is
(V, @) by Theorem 3.2.2. It means that H{°" is a wonderful variety in the sense of Remark 2.2.10.

5.1.2 Type G5: Cayley Grassmannian

By Theorem 3.2.2 for g = Gz, the morphism FC"" : FC™" : Hg" — Cg2" is an isomorphism.
In fact, since Oy = G/G? (Theorem 3.2.1), we see that the colored fan of HZ’" is same with that of
[37, Theorem 4.1.(xi)], which represents an 8-dimensional smooth symmetric variety of Picard number 1,
called the Cayley Grassmannian CG. Here, for the complexifixed Octonion algebra Q¢ and its imaginary
part Im Qc¢, the Cayley Grassmannian CG is defined to be the subset of Gr(3, Im O¢) consisting of the

imaginary parts of the 4-dimensional subalgebras of QOc. Geometry of CG is investigated in [28], and
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moreover, it has been observed that C'G parametrizes conics on Z¢, in [29, p. 1784]. Furthermore, since
the open orbit O¢, in CG admits a wonderful compactification, and since a colored cone of a wonderful

variety is of form (V, @), we see that CoCg, is the wonderful compactification of O¢, by Theorem 3.2.2.

5.2 Conjugacy Classes of Conics

In this section, we describe the G-conjugacy classes of conics in adjoint varieties. Since the G-
conjugacy classes of conics correspond to G-orbits in Hy, we study G-orbits in Hy. First, we count their

number, using Lemma 2.3.4, Proposition 2.3.7 and Theorem 3.2.2.
Corollary 5.2.1. The number of G-orbits in Cy is

4 ifg=A, withr>3;
ifg= Ay, C,. withr>2;
11 ifg= B, withr >4, D, withr >5;
7 ifg=DBs, Eg, E7, Eg, Fy;
15 if g= Dy;
3 ifg=0Gs.

The number of G-orbits in Hg is

4 ifg=A, withr>3;
ifg= Ay, C,. withr>2;
15 ifg= B, withr >4, D, withr >5;
9 ifg=DBs, Eg, B, Fg, Fy;
21 ifg=Dy;
3 ifg=0Gs.

To figure out which conjugacy class of conics is associated to each colored face, we need to analyze
geometry of singular conics in more detail. The following proposition shows that reducible conics form

a prime divisor in the spaces of conics.

Proposition 5.2.2. Assume that g is not of type C. Then each of Hy and Cg4 contains a prime divisor

parametrizing all reducible conics and whose general points are represented by non-planar reducible conics.
Proof. Tt is enough to consider the Hilbert scheme. In the notation of Subsection 2.2.2, define

© Cor xCor ifg=A,, r>2;
7T s x gy N diag(Co) otherwise.

Since g is not of type C, each element of IC, represents a reducible conic, via a morphism
u: ICO g Hg, ([T0£1], [TOEQ]) — [[,1 U EQ]

where £;’s are lines passing through o. Moreover, u is finite onto its image (bijective if g = A,, and
2-to-1 otherwise), and its image is the locus of reducible conics singular at 0. Thus dimu(K,) = dim K, =
2-(n-1). Since for each g € G, the translation g-u(K,) is the locus of reducible conics singular at g - o,

the locus of reducible conics is given by G - IC,, which is irreducible and whose dimension is equal to

dim/C, +dimZ; = (2n-2) + (2n+1) =4n-1.
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In particular, it is a prime divisor.

To see that general reducible conics are non-planar, we may assume that g is not of type A (as no
planar conic is parametrized by H 4 ; see Subsection 3.1.2). Suppose that ([T,L£1], [ToL2]) € K, and put
[C]:=u([T,L1], [ToL2]), i.e. C'=L1ULy. Then C is planar if and only if the secant line joining [T,L£1 ]
and [T,L,] is contained in C,”° c P(T,Z,) (cf. [23, Section 4.3]). Therefore if every reducible conic is
planar in Zg, then the secant variety of Co? coincides with Cy”° itself, which is a contradiction (see [16,
Section 6.3]). O

Next, we count the conjugacy classes of reducible conics when g is not of type C. If g=A,., r > 2,
then these are easy to count. In fact, if g = A, then by Theorem 3.2.2 and Proposition 5.2.2, Ha, N O4,
is a single orbit represented by reducible conics. If g = A,., > 3, then by Theorem 3.2.2 and Proposition
5.2.2, the locus of reducible conics consists of two orbits.

Thus we focus on the cases where g is not of type A or C. To do this, define P*° to be the semi-simple
part of the isotropy group P at o € Zy. Then the Dynkin diagram of P*® can be obtained by removing o,
in the Dynkin diagram of G, and P** acts transitively on the space of lines passing through o (Theorem
2.2.7). With respect to this action, let Q) ¢ P** be an isotropy group. We may choose @) as the parabolic
subgroup of P** generated by the complement of N(aj,) by [23, Theorem 4.8]. Also choose a line [,
passing through o such that Stabpss(ly) = Q.

Lemma 5.2.3. Assume that g is not of type A or C. Then we have the following:

1. The number of G-conjugacy classes of reducible conics in Zy is equal to
(Wpse, Q\Wps: [Wpes ] - 1,

i.e. the number of double cosets Wpss g -w-Wpss g (weWpss ) minus 1. For each g, the number

of double cosets is given in Table 5.1.

2. The G-stable prime divisor of Cy°" given in Proposition 5.2.2 corresponds to the following colored

face:
{ Qs0-(=12) ifgis B, (r>3), D, (r>4) or Go;

@ZO : (_74) ng is ET (T = 67 77 8) or F4'

Proof. First of all, the number of double cosets can be easily computed from the diagram of the parabolic
subgroup @ in P*®, for instance by using the description of Weyl groups ([6, Plate I-IX]) and recipies for
the Hasse diagrams ([1, Chapter 4]).

We claim that the number of double cosets minus 1 is an upper bound of the number of conjugacy
classes of reducible conics. Note that each G-conjugacy class of reducible conics in Zg has a representative
which is singular at 0. Moreover, if two reducible conics singular at o are G-conjugate, then they must

be P-conjugate since o is their unique singular point. In other words, there is a bijection between
{G-conjugacy classes of reducible conics in Z4}

and

{P-conjugacy classes of reducible conics in Z, singular at o}.

Each P-conjugacy class of reducible conics singular at o has a representative of form [y ul for some line [

such that lonl = {o}. Since Stabpss(ly) = @ and P®® acts on the space of lines containing o transitively,
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’ g ‘ Diagram of Q c P*° | |Wps: o\Wpss [Wpss ¢l ‘

BT (7" > 4) X )3(—F 4—.:;:: 6

Bs X % 4
r—1

D, (’I’ > 6) X g—k 4—< 6
D5 X o—X—e 6
Dy X X X 8
FEg oo x—o o 4
Ex H—O—{ 4
F4 o—e=<X 4
Go x

Table 5.1: Number of double cosets of Wpss ¢ in Wpss for the parabolic Q) ¢ P*°.

the number of P-conjugacy classes of such lpul is at most the number of Q-orbits in P**/Q—{e-Q}, which
is equal to |[Wpss g\Wpss [Wpss g|—1 by the generalized Bruhat decomposition ([6, Chapter IV.2.5]).

Now let us show the equalities. Let D c Cy°" be the inverse image of the G-stable prime divisor
given in Proposition 5.2.2. Then D corresponds to a 1-dimensional colored face of the colored cone of
Cy?". By its definition, the ray corresponding to D is contained in the colored faces corresponding to
orbits defined by reducible conics. Moreover, if g # Bs, G2, then the number of conjugacy classes of
planes contained in Z; (Table 3.5) and the number of colored faces of codimension 1 are same. Thus
by Lemma 4.2.1, if g # B3, Go, then the ray corresponding to D is contained in the intersection of all
colored faces of codimension 1 in the colored cone of Cy".

If g = Go, then C°" has only one colored extremal ray, and the number of colored faces containing
it is 2. Thus the statement follows from Lemma 2.3.4.

If g is exceptional but # G2, then Cy°" has two colored extremal ray Qo (-71) and Qo (-74), and
the numbers of colored faces containing them are 5 and 4, respectively. By Lemma 2.3.4, the number
of colored faces containing the ray determined by D is at most 4. Therefore D corresponds to the ray
Q>0 - (—74) and the statement follows.

If g = Dy, the intersection of all colored faces of codimension 1 is Qsg - (—y2). Thus D corresponds
to Qs+ (—2) and the number of colored faces containing it is 8.

If gis By (r 2 4) or D, (r 2 5), then the intersection of colored faces of codimension 1 is
Qs0(-72, =4). Thus D corresponds to either Qso(—72) or Qs0{-74), and each of them is contained
in 6 and 7 number of colored faces, respectively. By Table 5.1, D corresponds to Qso{(—72) and the upper
bound is attained.

From now on, assume that g = Bs, and recall the list of the colored faces given in Section 3.2.
Then the space of planes in Zp, is homogeneous, and the unique B-stable plane in Zp,, say P, is given
in Table 3.5. By Corollary 3.5.4, planar contact conics and planar reducible conic form single orbits
Opc and Oppr in Cp,, respectively. Note that the stabilizer of a given planar contact conic in P is

contained in Stabg(7P). Since the space of smooth conics in P =~ P? is 5-dimensional, and since the map
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Stabg(P) — Aut(P) is surjective by Corollary 3.5.4, an isotropy group of Op¢ in G is of codimension 5
in Stabg(P). Since Stabg(P) = P,,, this implies that

dimOpc =dim G/P,, +5=11=dimOp, - 1.

That is, Opc is a G-stable divisor in Cp,. Hence its inverse image Dpc in C3." corresponds to a
1-dimensional colored face of the colored cone. Observe that the colored cone of C" has three 1-
dimensional colored faces. Thus there is a 1-dimensional colored face not corresponding to D nor Dpc
and it corresponds to a G-stable divisor defined by non-planar contact conics.

Suppose that the number of conjugacy classes of reducible conics in Zp, is strictly less than 3, which
is the number of double cosets minus 1. Then D corresponds to a ray Qg - (—v;) for some i € {1, 3},
and the number of conjugacy classes of reducible conics is equal to 2. It means that the orbit Onpgr
corresponding to D is indeed a unique orbit of non-planar reducible conics, hence the number of conjugacy

classes of non-planar contact conics is
7 — 1(twistor) — 1(non-planar reducible) — 3(planar contact/reducible or double line) = 2

by Corollary 5.2.1. Thus one of the 2-dimensional colored faces corresponds to a conjugacy class O of non-
planar contact conics. However, since any 2-dimensional colored faces contain one of rays corresponding
to D or Dpc, O is contained in the boundary of Onppr or the boundary of Opc. This is a contradiction
since both smoothness and non-planarity are open conditions. Therefore the number of conjugacy classes

of reducible conics is 3, and D corresponds to Qg - (—72). O

Theorem 5.2.4. 1. Letg=C,, r22. Then Cc, ~Hg, consists of two orbits: one for twistor conics,

and one for non-planar contact conics.

2. Let g = Aa. Then both Cy4, and Ha, consist of two orbits: one for twistor conics, and one for

non-planar reducible conics.

3. Let g=A,, r>23. Then both C4, and Ha, consist of four orbits: one for twistor conics, one for

non-planar contact conics, and two for non-planar reducible conics.
4. Let g be B, with r >4 or D, with r >5.

(a) Cgy consists of eleven orbits: one for twistor conics, two for non-planar contact conics, two for
planar contact conics, three for non-planar reducible conics, two for planar reducible conics,

and one for double lines.

(b) Hy consists of fifteen orbits: one for twistor conics, two for non-planar contact conics, two for
planar contact conics, three for non-planar reducible conics, two for planar reducible conics,

three for non-planar double lines, and two for planar double lines.
5. Let g be either B3 or of an exceptional type other than Gs.

(a) Cq consists of seven orbits: one for twistor conics, one for non-planar contact conics, one for
planar contact conics, two for non-planar reducible conics, one for planar reducible conics,

and one for double lines.

(b) Hy consists of nine orbits: one for twistor conics, one for non-planar contact conics, one for
planar contact conics, two for non-planar reducible conics, one for planar reducible conics,

two for non-planar double lines, and one for planar double lines.
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6. Let g= D4.

a) Cp, consists o een orbits: ome for twistor conics, three for non-planar contact conics
4 p )
three for planar contact conics, four for non-planar reducible conics, three for planar reducible

conics, and one for double lines.

(b) Hp, consists of twenty one orbits: one for twistor conics, three for non-planar contact conics,
three for planar contact conics, four for non-planar reducible conics, three for planar reducible

conics, four for non-planar double lines, and three for planar double lines.

7. If g = Go, then both Cg, and Hg, consist of three orbits: one for twistor conics, one for non-planar
reducible conics, and one for non-planar double lines. In particular, every smooth conic in Zg, is

a twistor conic.

Proof. For the case where g is of type A or C, see Subsection 3.1.1 (type C) and the discussion after
Proposition 5.2.2. Then the numbers follow immediately from Corollary 5.2.1.

Thus we may assume that g is not of type A or C. The statements for the Chow schemes follow
from Lemma 3.3.2, Corollary 3.5.4, Corollary 3.5.5, Lemma 5.2.3 and Corollary 5.2.1.

For Hg, recall that the morphism FC : Hy - C, gives a bijective correspondence for orbits of

smooth conics and reducible conics (Remark 3.1.3). Therefore
# (orbits in Hy) — #(orbits in Cy) = #(orbits of double lines in Hy) -1

(as C4 contains a unique orbit of double lines). The left hand side can be computed by Corollary 5.2.1,
and then the statements follow from Corollary 3.5.4. O

In Figures 5.1-5.8, we visualize the orbit structure of Hy for each g. In the following graphs, each

. . L A
vertex represents a G-orbit in Hy (or a conjugacy class of conics in Zy), and each edge | means that
B

Bc Ain Hg, and there is no other orbit B’ such that B c B’ ¢ A. We also use the abbreviations
(N)PC, (N)PR, and (N)PD for (non-)planar contact, (non-)planar reducible, and (non-)planar double,
respectively.

In particular, the orbit structures of Hy for Bs and for exceptional Lie algebras # Gy are different,

although the numbers of conjugacy classes are same (Theorem 5.2.4).
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(Twistor)

(NPC)

Figure 5.1: Orbit structure of Hy for g = C, (r > 2).

(Twistor)

(NPR)

Figure 5.2: Orbit structure of Hy for g = As.

(Twistor)

(NPC)

/ \

\
(NPR)
)/////

(NPR

Figure 5.3: Orbit structure of Hy for g = A, (r > 3).

(Twistor)

A

(NPC) (NPR) (NPC)

P e N

(PC) (NPR) (NPD) (NPR) (PC)

| TS

(PR) (NPD) (NPD) (PR)

T |

(PD) (PD)

Figure 5.4: Orbit structure of Hy for g = B, (r>4) or D, (r > 5).

(Twistor)

AN

(NPC) (NPR) (PC)

N

(NPR) (NPD) (PR)
N
(NPD) (PD)

Figure 5.5: Orbit structure of Hy for g = Bs.
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TW1st0r

P

(NPC) NPC (NPR)

M\\

(PC) ~  (PC) (PC) (NPR) (NPR) _ (NPR)  (NPD)

NN eSS

(PR) (PR) (PR) (NPD) ~_ (NPD) _ (NPD)

N D

(PD) (PD) (PD)

Figure 5.6: Orbit structure of Hy for g = Dy.

(Twistor)

/ \
(NPC) (NPR)
\ ~ |
(PC (NPR) (NPD)
| / ~ |
(PR) (NPD)

\ /

Figure 5.7: Orbit structure of Hy for g = E,. (r=6, 7, 8) or Fj.

(Twistor)

(NPR)

(NPD)

Figure 5.8: Orbit structure of Hy for g = G>.
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5.3 Smoothness of Hilbert Schemes

Let us prove smoothness of Hi°" and determine the singular locus of Cy".
Corollary 5.3.1. Let g be a complex simple Lie algebra.
1. H§°" is smooth. Moreover, the anticanonical line bundle of Hy" is

o not globally generated if g= B, (r+5 andr>3), D, (r#6 andr>4), Es;
e globally generated but not ample if g = Bs, Dg, E7, Fy;
o ample ifg=A, (r>2), C. (r>2), Egs, Gs.
2. Cror s
e not Q-Gorenstein if g=B, (r+5 andr>3), D, (r>4), Eg, E7, Es;

o Gorenstein Fano with terminal singularities but not Q-factorial if g = By, Fy;

o smooth Fano ifg=A, (r>2), C, (r>2), Gs.
In particular, the singular locus of Cy°" is equal to the subset formed by double lines if g +Go.

In fact, the smoothness of Hg°" follows from [10, Proposition 3.6]. In the following paragraphs, we

present another proof using spherical geometry.

Proof. First, if g = C, (r > 2), then Hy(~ C;) is the Grassmannian (Subsection 3.1.1), hence the
statement follows. If g = G5, then Hg‘”"(: Cg‘”) is the Cayley Grassmannian, which is a smooth Fano
variety (Subsection 5.1.2). In the case where g = A, (r >2), Hy?" (= C3") is the blow-up of the product
of two Grassmannians (Subsection 5.1.1). In particular, it is smooth. Observe that its colored fan is
(V, @) (Theorem 3.2.2), and so Hy*" is Fano by [35, Theorem 2.1].

Next, consider Hy?" for other g. We apply Ruzzi’s smoothness criterion for symmetric varieties
in [37, Theorem 3.2]. Observe that the notation of [37] is slightly different from ours, since we use a
different definition for the restricted root system. In our setting (Section 2.3, Section 3.2), the criterion

can be formulated as follows.

Theorem 5.3.2 ([37, Theorem 3.2]). Assume that g is not of type A or C' (hence € is injective and R/Ou
is a reduced root system). Let X be a simple Og-embedding, and assume that its unique closed orbit Y is
projective. For the standard Levi factor L of Npep(0,)~F(X) Staba (D), let Ry, » be the sub-root system of
Rbg spanned by the roots of L. The simple factors of Ry, , are denoted by RJLJ so that Ry, » = H?;l RJL’U
for some integer p, and their simple roots {\]}; := Sbg N R]L’U are indezxed as in [32].

Then X is smooth if and only if the following conditions are satisfied:
1. For every j, R]L,U is of type A. Moreover, Z?zl(lj +1) is at most the rank of R'Og where l; is the

rank of R} _;

2. The cone C(X) is spanned by a basis B of % ~Z((R’Og)v), i.e. the half of the coroot lattice of the

root system Rp,

3. In the doubled weight lattice 2- (Z{(Rp,)"))*, we can index the dual basis of B as

1 1 q q
Wis oo Uit oo U ...,qu+1}

for some integers q(> p) and l; so that
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(a) (yf, (2ANYY is=1if j=h andi=k, and =0 otherwise;

(b) yf - lj%yljm is the ith fundamental weight of RJL’G times 2 for 1 <j<pand1<i<l;.

We claim that the simple spherical varieties defined by maximal colored cones in Table 3.3 satisfy
the conditions in Theorem 5.3.2. Indeed, in each case, if m; denotes the ¢th fundamental weight of R’Og,

then Ry, ,, B and its dual basis {y/} can be chosen as follows.
L. g= BT (T 2 4) or D’r‘ (7" 2 5) For (QZO(_’}Qv —V4, A;v )‘X>7 {D27 D4})7

Rp o= e o =41 x Ay,

Ao Ay
1 1 1 3 1 1
B={- 5N -\ =AY = 3N -5 - A - SN - o pa )

y% = =4 + 27a, y% = -6y + 273, yf =211 — 273 + 27y, y% =41 - 273,

For (Q20<_717 V2, V4, >\\2/>7 {DQ})a

Ry .= e =A,
A2

1 1

1 1 3 1
R O A S R R R VR VEPYEYEPVEE MY

271 9

y% 1= 2mg — 4Ams + 4y, y% =27 — 673 + 87y, yf = =21 4+ 2m3 — 27y, yg =273 — 4my.

2. g=Bs: For (Qso{—v1, =72, A3), {D2}),

Rp o= e = Ay,
A2

1
2

yi =219 — 4ms, y% =21 —4ms, y% = -2 + 2ms.

1 1 1
B={-A - X - 5N -5 A Ay - oA ox )

For (Qso{-72, =73, A3), {D2}),

Rp o= e = Ay,
A2

1 1 3 1
B={-3M - X - 4, A -2 - N o)
y% = -4 + 27a, y% = —6my + 473, y% =21 — 273,

3. g=Dy: Foreachie {1, 3,4}, let j # k be distinct elements in {1, 3, 4}\{i}. For (Qso{—2, —v;, =k, A3},

{DQ})7

Rp o= o =44,
A2

1 1 1 1 1 1 1 1
B = {—i)q “A2 = A5 T AL AL oA S DA S AL Ay — DA AT - 5»5},

Y1 = 2mo — ATy, Y 1= 2y + 273 + 27y — 874, Y = 2 — 275, ys 1= 2m; — 27y,

4. g= E’r (7” = 67 77 8) or F4: For (QZO(_717 V4, )‘\1/7 AX)? {Dh D4})a

Rp o= o o =41 x Ay,
A A

1 1 1
B={-ar - Iar-oxy -t oar- - Sy g ot

y% =21 — 4o + 273, y% = 0679 + 473, yf = 4o — 4ATg + 27y, y% = 8my — 673.
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For the remaining statements, we use the well-known criteria for singularities of spherical varieties.
Our main reference is [33]. Let us briefly explain the criteria together with the necessary data given in
Table 5.2. Recall that the valuation cone V is a cone in the vector space Q(([p_)"). By taking its negative
dual V" :={m e Q(Rp ) : (m, V) <0} and the embedding Q(Rp, ) = x(T"/T"nG7) @ Q > x(T") @ Q =
Q(R’), we obtain a cone in Q(R’). We call the primitive elements of ~VY'n Ao (= -V¥ nx(T'/T' n G7))
in Q(R') the spherical roots of Oy. Now for each color D € D(Oy), choose a simple root o’ € S” which is
not a root of (the standard Levi part of) Stabg (D). That is, o’ ‘moves’ the divisor D ¢ Og4. Then we
say that

(a) if &' is a spherical root;
D is of type | (2a) if 2a’ is a spherical root;
(b) otherwise,
and the type of D does not depend on the choice of a’. If D is of type (a) or (2a), then we put ap := 1.
If D is of type (b), then ap is defined as follows. Let S” c S” be the set of simple roots which are not
roots of (the standard Levi part of) the stabilizer of the open B’-orbit in Oy, and R"” c (R’)" the set of
positive roots which are not generated by S’ \ S”. Then for D of type (b) and o' moving D, define

ap:= . (B']d).

BIGRII

Now for an Og-embedding X, its anti-canonical divisor can be written as a Weil divisor

-Kx = Z D + Z ap, -D;.
G-stable divisor DeX D;eD(0g)

See [33, Theorem 2.20] for details. The spherical roots, types and integers ap of the colors of Oy can be
deduced from the Satake diagram (Table 3.1) and Theorem 2.3.11, and their list is given in Table 5.2.

Now the statement on the singularities of Cj”" can be obtained from the criteria for Q-factoriality
([33, Proposition 3.3]), (Q-)Cartier divisors ([33, Proposition 4.2]) and terminal singularities ([33, Propo-
sition 5.2]) Similarly, for the positivity of anti-canonical divisors of Hy*" and Cj°", the criteria for global
generatedness and ampleness in [33, Proposition 2.19] can be applied. We omit the detailed computa-

tion. O
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‘ Type and Coeflicient ap, of Color D;

g Spherical Roots of Oy
20 (1<i<3 D; (1<i<3): (2a), ap, =1
By (rz5) 2021(+m+2042, (D4: (b) 31@( :)27’ —DL7
r » 0Dy
B, (r=3,4) 2a; (1<i<r) D; (1<i<r): (2a), ap, =1
D, (r26) 20 (1<i<3), D; (1<i<3): (2a), ap, =1
20+ +2al_o+al_+al Dy: (b), ap, =2(r-4)
D 2a; (1<1<3), D; (1<i<3): (2a), ap, =1
o) + o Dy: (b), ap, =2
Dy 20 (1<i<4) D; (1<i<4): (2a), ap, =1
o + af, Di: (b), ap, =2
s b+ al, Ds: (b), ap, =2
204, Ds: (2a), ap, =1
20y, Dy: (2a), ap, =1
af +2ak + o, Di: (b), ap, =4
B as +2ah + ar, Dy: (b), ap, =4
2a, Ds: (2a), ap, =1
20y Dy: (2a), ap, =1
20/, Dy: (b), ap, =
. 20, Dy: (b), ap, =8
20 + 2y + 20k + ag + af, Ds: (2a), ap, =1
o) + 200 + 205 + 205 + o Dy: (2a), ap, =1
Fy 20 (1<i<4) D; (1<i<4): (2a), ap, =1
G+ 2a; (1<1<2) D; (1<i<2): (2a), ap, =

Table 5.2: Spherical roots and type of colors of O.
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5.4 Minimial Rational Curves on Hilbert Schemes

As a final corollary, we describe minimal rational curves on the smooth projective symmetric variety

H{°" (Corollary 5.3.1), in terms of conics on Z. To do this, recall the following definition:

Definition 5.4.1. Let X be a smooth projective variety, and K c RatCurves(X) (Subsection 2.2.2) an

irreducible component.

1. K is called a family of minimal rational curves on X if for general x € X, K, is nonempty and

projective.
2. Assume that I is a family of minimal rational curves. For general x € X and the rational map
Te Ky > P(T,X), [C]~[T.C]

(defined over the locus of rational curves smooth at x), the closure of the image of 7, is called the

variety of minimal rational tangents (VMRT for short) of K at x.

A family of minimal rational curves exists on X if and only if X is uniruled ([20, Proposition
I1.2.14]). In particular, since spherical varieties are rational (this is because any B-orbit is rational;
see [5, V.15.13.(a)]), a smooth projective spherical variety admits a family of minimal rational curves.
Especially, minimal rational curves on symmetric varieties are studied by [8] and [9]. Let us recall a

special case of their result:

Theorem 5.4.2 ([8], [9]; cf. Remark 5.4.3). Let G’ be a connected simple Lie group acting on a smooth
projective variety X. Suppose that X is G'-symmetric. Let X° be an open G'-orbit in X, o' € X° a
point, and K' := Stabg(0"). Assume that K' is semi-simple. Then we have the following:

1. X admits a unique family KC of minimal rational curves. Moreover, it has the following properties:

(a) Ko consists of smooth rational curves.

(b) Ko contains a unique closed orbit under the action of the identity component (K')°, containing

a rational curve exp(l)- o' for a highest weight line l ¢ T,y X.

(c) Ko is smooth and connected.
2. If furthermore X has no color as a G'|K'-embedding, then the following hold:

(a) For the VMRT Cy of K at o', the tangent map 7, : Ko = Cor (Definition 5.4.1) is an isomor-
phism.

(b) If the restricted root system of G'|K' is not of type A, then Ko is K'-homogeneous.

Remark 5.4.3. The statements of Theorem 5.4.2 can be deduced as follows. Whenever K’ is semi-
simple, the isotropy representation of G'/K’ is (K')%-irreducible ([45, §8.12]). Thus the first statement

follows from [8, Proposition 2.6], and the second statement follows from [9, Theorem 5.1-5.2].

Now we consider minimal rational curves on Hg?", which is a smooth projective symmetric variety
(Corollary 5.3.1). If g is of type A or C, then we have a concrete description of H{°" (Subsections 3.1.1
and 5.1.1), hence its minimal rational curves can be easily described.

Therefore, from now on, we only consider the case where g is not of type A or C. To apply Theorem

5.4.2, let Dy be a smooth projective Og-embedding without color and equipped with a G-equivariant
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¢ [Dps-BTD |

B, (r24) | Q<@

D, (r25) | QFxQ¥
Bs Vs (P1) x Q2
D, Q% x Q?
Es Gr(3, 6) x P!
Er 0G(6, 12) x P!
s E7/Py x P!
£y LG(3, 6) x P!
Go P! x v3(P')

Table 5.3: VMRT D, of an O4-embedding Dy without color.

birational morphism 7 : Dy -~ Hg?". Such Dy exists, since, for example, one can take an equivariant
resolution of singularities of the decoloration of Hi°" and then apply the equivariant Chow lemma. Recall
that RIOB is not of type A unless g = Cy, and that G is semi-simple unless g is of type A (Theorem
3.2.1). Therefore Dy satisfies the assumptions in Theorem 5.4.2. Then the following corollary is a direct

consequence of Theorem 5.4.2 and [9, Table 1].

Corollary 5.4.4. Assume that g is not of type A or C. Let o' :=[C,] € Oy (Lemma 3.3.3) be the base
point. Suppose that Dy is a smooth projective Oy-embedding without color. Then Dy has a unique family

D of minimal rational curves, and Dy is G°-homogeneous and consisting of smooth rational curves. Its

VMRT Dy = P(TyyDy) at o' € Og(c Dy) is described in Table 5.3.
Now we state the main result of this section.

Theorem 5.4.5. In the setting of Corollary 5.4.4, assume that there is a G-equivariant birational
morphism 7 : Dg — Hy". Then H{" admilts a unique family H of minimal rational curves, and the

morphism 7 induces an isomorphism mw, : Dy — Hor, [C] = [7(C)].

To prove Theorem 5.4.5, we need a better understanding of minimal rational curves on Hg°". From
now on, assume that g is not of type A or C, and let H be a (unique) family of minimal rational curves

on H°", which exists by Theorem 5.4.2. Then since
TyOq ~g/g” ~g-1@m

as G“-representations, g, o, is a highest weight line, where «a;, is the unique neighbor of —p in the
extended Dynkin diagram of g (Section 2.1). Thus the rational curve exp(gy-a,,) 0’ is in the unique
closed G?-orbit in H,r.

We describe the unique closed G7-orbit in H, in terms of conics on Zg. Let x be a point in C,(c Zy).
Recall that P(T,Zy) N\ P(D,) parametrizes twistor conics passing through x on Z; (Theorem 3.3.4), and
that the space C, of lines through z is in the hyperplane P(D,) (Subsection 2.2.2). For each [{] € C,,
consider the linear line joining [T.C,] € P(T},Zy) ~ P(D,) and [I] € P(D,), denoted by o’l. Then every
point in o'l N {[I]} is lying in P(T},Z,) \ P(D,), hence corresponds to a twistor conic through z. Thus

we may define

Teo) ={[Cl€Og: 2z C, [T,C]edl}, VzeC, [l]eC,.
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This is a rational curve on Hy°", since its open part is isomorphic to o'l ~{[I]} ~CL. In fact, we have

Torlan, 1 =BGy 0 51)

since for t € C,

exp(t : Epfajo ) : Cp = exp(t : Epfozjo) : exp(g*p) "0 = eXp(Adt-EpfajO gfp) "0

represents a point [E_, +t-Nyo,  —pE_a, | in P(TyZ;), which is in the line joining [7,C,] and [g-a,, |-
Moreover, since the Lie algebra of the standard Levi subgroup L of P is go, L fixes both o € Z; and

o' e Hy°", and for any g € L, we have
9-To,111=To, g1y V[l €Co.

Since L acts on C, transitively (Subsection 2.2.2), we conclude that each 7, ;; ([{] € C,) represents a
point in H,, and that
{[To,n] e Hor : [1] € Co}

is L-homogeneous. Since G acts on C, transitively and
k-To,i1 = Thoo,keqiy Ve €G7,

we see that

{[To, ] €HorixeCy, [1]€Cr}

is G?-homogeneous. In fact, it is projective by the equation (5.1) and Theorem 5.4.2.

Lemma 5.4.6. Keep the previous notation. For each x € C, and [I] € Cy, T, i)~ Oy consists of a single

point too such that
1. te is represented by a non-planar reducible conic on Zg, and
2. G-te 1is of codimension 1 in Hg".

Remark 5.4.7. Lemma 5.4.6 means that ¢, represents a general point of the prime divisor given in

Proposition 5.2.2.

Proof of Lemma 5.4.6. Recall that T ;; \ Oy is isomorphic to C!, hence its boundary is a single point
too. To show the statements on fe, by homogeneity, we may assume that z = o0 and [ = g_,, mod p.

Then the members of 7, ;] \ {te} can be written as for ¢ € C,

eXp(t . Ep_ajo) . Cp = Zg n P(Adt'Ep—ajo EP’ Adt‘Ep—ajO I{p7 Adt'Ep—ajo E_p).

Since
Adt-Ep_ajO p= Epv
Adt-E,,_ajO Hp =41, = t- <pv P ajo) : EP*Oéjo’
Adt'Ep—ajO -p = E*p +1- NP*OLJ’ov*P . E,ajo y
we have

P(Adt'Ep—ajo Ep7 Adt‘Ep—ajo flp7 Adt'Ep—ajU E_p) = IP(EP’ Hp—t-(p’ P—aj0>'Ep—aj07 E—p+t'Np—o¢jo}—p'E—Oéj0 )
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By taking ¢ - oo, we see that the limit curve is contained in
ZgnP(Ey, Ep-a;,, B-a,,)-

As
eXp(g—am) ’ [Ep] = P(Epa Ep—ajo)

(which is the line tangent to [ at o) and
exp(gp) - [E-aj, ] = P(E-ajys Bp-ayy ),

the intersection contains a reducible conic singular at [g,-a, ]. In fact, since the line P(E,, E_,, ) is

not contained in Zg, we see that
too = [P(Ep, Ep-a;,) UP(E_q,; Ep-ay,)]-
Now it is enough to show that the G-orbit of the reducible conic
P(E,, Ep-a;,) VP(E_a,, s Epa,,)
is of dimension (4n —1). In fact, since the reflection s,; € W acts by
Saz, (P) = p—{plagy) - vy = p—

and
Say, (O‘jo) = ~Qjp

we may compute the isotropy group of the reducible conic
P(Ep-a;,, Ep) VP(Eq,,, E,).
Since its singular point is o = [E,], the identity component of the isotropy group is equal to
{9 P:Adyg-a,, =9-o; modp, Adyga; —p=0a;-p modp}.
Hence its Lie algebra is
{Xep:[X, 00,100, modp, [X, 0, p]<0a,-p modp}.
Observe that

{Xep:[X7 g_ajo]gg_ajo modp}:béB &P o

a<0,mj, (a)=0, a~aj,¢R

:b® @ gOéa

a<0,m;, (a)=0, (a, a;,)=0

{Xep:[X, gajo,p]SQ%O,p mod p}:tﬂa b ga®g' ® b o
a<0,m;, (a)=0 a>0, mj, ()=0, a+aj,—p¢R
=te @ ga © gl ® @ Ja
a<0,m;, (a)=0 a>0,mj, (a)=0, (a,crj,—p)=0
=toe P g.0g'e @ o
a<0,m;, (a)=0 a>0,mj, (a)=0, (a,a;,)=0

(For the second part, note that a;, — p is the minimum in R \ {-p}). Therefore the Lie algebra of the
isotropy group is
to ) ga®gl.

m (@)=0, (a, aj,)=0
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In other words, the tangent space of the G-orbit of the reducible conic can be identified with
g20g-10 EB Ja-
mjo (@)=0,{a, 054 )#0

Its dimension is

dim Zg + #(roots of Py, ) - #(root of PajO,N(ajO)).

Since

|Ra,xB, | =2+2(r-2)? (=B, r>4)

|[RA,xa,|=2+2 (g =Bs)
|[RA,xD, | =2+2(r-2)(r-3) (g=Dy,725)

|RA xA xA, | =2+2+2 (g=Ds)

#(roots of Py, ) = |Ra.| =30 (g=Fs)

|[Rpg| = 60 (9=Er)

|RE,| =126 (g = Es)

|Rc,| =18 (9=F)

|Ra,|=2 (g=G2)

and

IR, ,|=2(r-3)>  (9=B, r25)

|Ra,|=2 (9= Bu)

0 (9= Bs)
|Rp, | =2(r=3)(r-4) (g=Dy,r26)

|[Ra,xA,|=2+2 (g=Ds)

#(roots of PajO,N(a_,-O)) = 0 (g=Dy)

|RA,xA,| =6+6 (g=Fs)

|Ra,| =30 (9=Er)

|REs| =72 (9= Es)

|Ra,|=6 (9=ry)

0 (9=G2)

we see that

4r-8 (g=B,,1r>3)
4r-10 (g=Dy, 1> 4)
18 (9 =Es)
#(roots of Py, ) — #(root of Po, N(ay,)) = 30 (g=Er) =2n - 2.
54 (9= Es)
12 (9="Fy)
2 (9=G2)

Therefore

dim Z + #(roots of Py, ) = #(root of Po, N(a;,)) =4n-1.

5o

O

Proof of Theorem 5.4.5. Hg°" admits exactly one family H of minimal rational curves and H, is ir-
reducible by Theorem 3.2.1 and Theorem 5.4.2. Since m is a birational morphism, 7 induces a G-
equivariant embedding 7, : D, = H, by [9, Lemma 2.4 and Remark 2.5]. Since D, is G?-homogeneous

and H, is irreducible, to show that m, is surjective, it is enough to show that dim D, = dimH,. To do

68



Figure 5.9: Locus in Zy swept by conics parametrized by a minimal rational curve on Hy".

this, recall that for a rational curve [C] € D,, and its image [7(C)] € H,, both C and 7(C) are free,
hence we have

dim D, = deg, K]_Dlg -2, and dim%H, =deg Kﬁlgm -2.

(See [20, Theorems II1.1.7 and I1.2.16].) Thus we need to show that C' and 7(C') have the same anti-
canonical degree. In fact, by Lemma 5.4.6, if te € 7(C) \ Oy, then G -t is of codimension 1, hence
the birational morphism 7 : Dy — H{°" is an isomorphism over U := Oy U (G - o) (Which is an open
subset of Hy°" since there are only finitely many G-orbits). Since 7(C') c U, C' and 7(C') have the same

anti-canonical degree. Hence the statement follows. O

Remark 5.4.8. Theorem 5.4.5, together with Table 5.3 and Table 2.2, shows that the VMRT of Hg*"
is isomorphic to P! x C,. This reflects the fact that the VMRT of H°" at [C,] consists of [Ty (T, 17)]
for z € C,(~P') and [I] € C,.

Finally, we describe the locus swept by conics parametrized by T, ;7 in Zg.

Proposition 5.4.9. Assume that g is not of type A or C. Let x be a point in Zg, C a twistor conic,
and L a line on Zy such that x e Cn L. Putl:=T,L, and let a be the smallest Lie subalgebra of g such
that C'u L c P(a).

1. dima =5, and the sly-algebra generated by C' is a mazximal reductive subalgebra of a. In particular,

the unipotent radical u of a is of dimension 2.

2. The line L' := P(u) does not intersect with the plane spanned by C, and [L U L] is the unique
boundary point T, ;1\ Og.

3. The intersection P(a) N Zg is the union of conics parametrized by T, 1.

4. P(a)nZy is a cubic scroll in P(a) with its directriz L', and L is a line of the ruling. More precisely,

P(a)nZg = U P(s, £(s))

seLl!
for an isomorphism f: L' — C such that L =P(s, f(s)) for some s € L.
Proof. As before, we may assume that
33:0(: [E/I])v C:CP(: IP>(Epa Hpv E—p)nZg)v EZP(E/H Ep—ozjo) (l:g—ajo mod p)
Then

a=C(E,, Hy, E_p,Bpa,,, B-a,,)

69



and its unipotent radical u is (C(Ep_ajo, E_Oéjo). Now the first two statements follow by the proof of
Lemma 5.4.6, since L' = P(Ey-a; , E-a;,)-

To show the third statement, consider the homogeneous coordinate
[z-E,+y-Hy+z E,+u-Ey o, +w-E o, ]€P(a).
If a point in P(a) is contained in Zg, it satisfies the relations

(z-E,+y-Hy+z-E_,+u-E, +tw-E o, , v E,+y-Hy+z - E_,+u-E, +w-E 4, )=0 (5.2)

—ajg ~%jo

and
(adz-Ep+y~Hp+Z-E,p+u~EP,aj0 +w~E,aj0 )3(E—p) =0. (53)

To simplify the notation, we define

ps P
c:= ( ) =(p, O‘jo) ={p, p—Oéj0> and N := NP—Oéjov—P :N—Pvajo =N

92 Xjg s PG

(see [14, Lemma 5.1]). Then by [14, Theorem 5.5], we can choose the root vectors so that
N%=c#0.

Now the equation (5.2) reads
yQC +xz=0.

On the other hand, for the equation (5.3), we have

[z Ep,+y - Hy+z Eytu-Eyo, +w-E o, B p]=2-Hy+y(-2c)-E_,+uN-E_,, ,
(adz~E‘p-¢—y'Hp+z~E_p+u-Ep_0Lj0 +w B )Q(E—p)

sz Ey+y-Hy+z B p+u-Eyp o +w-E_ o v Hy,+y(-2c) - E_,+uN-E_, |

=2?(-2¢) - E, + zy(-2¢) - H, + 2uN(-N) - E,_
+y*(~2¢)? - E_, + yuN(~c) - E_
+zx(2c)-E_,
+uw(—c) Epo, +uy(-2¢)N - E_

RF)

Qjg

%o
+wxc- E_ajo
=22 (-2¢) - E, + xy(-2¢) - H, + (2¢)(y*2c + zx) - E_, + zu(-2c) Epay, +c(=3yuN +zw) - E_

Qjg

and so

(adr-Ep+y-H,,+z-E_p+u<Ep_(,j0 B Y (E-,)
=2?y(20)* - E, + x(2¢)(y*2c + zx) - Hy, + xe(-3yulN +2w)(-N) - Ej_q,,
+yz?(=2¢)(2¢) - B, + (2¢)(=20)y(y*2c + 2x) - B, + yru(-2¢*) By, + (=) y(-3yuN + zw) - E_o;,
+22%(2¢) - H, + zay(-2¢)(2¢) - E_, + zzu(-2¢)(-N) - B-
+uzy(2¢?) - Epa;, + (2eN)u(y?2c + zx) - E_
+wz?(-2¢)N - Epaj, + wry(-2¢%) - E_
=3zcN (yuN —zw) - E,_

Xjg
Ajo

Xjg

+ eN(Ty%uc - 3zywN + dzzu) - E_ (y’c+x2=0).

Qg Ajg
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Therefore Z; nP(a) is contained in the locus of
vie+rzz =0, z(yuN -zw)=0, Ty uc-3zywN +4zzu=0.
If 2 = 0, then the equations imply 3% = 0, i.e.
(x=0)nZgnP(a) cP(E_, Epnyy, E-ay,)-

Since
P(E_,, E,ajo) u ]P’(Ep,ajo, E,ajo) cZg

but P(E_,, E ) =5,(P(Ey, E-q,,)) ¢ Zg, we conclude that

P~%jg

(x=0)nZgnP(a)=P(E_,, E_o; )UP(E) o, , E-a;, ) =L"0L

where L :=P(E_,, E_,, ). If 2 #0, then on the affine open subset (z = 1), we have

Xjo
z=-y*c, w=yuN (7y*uc-3ywN +4zu =0).
Thus
(x#0)nZgnP(a) c{[E,+y-H,+(-y’c) - E_p+u-E, o, +(yuN)-E_o, ]:y, ueC}.
For y, u e C, if y # 0, then
-u
eXp(; .Ep_ajo) [Epry-Hy+ (-yc) B, =Bty -Hy+ (-v¢) EoptuEpag + (yuN) 'E—ajo]a
which implies that

{(E,+y-Hy+ (~y°c) - E_p+u-Epo, +(yuN)-E_, J:yeC,ueC}c U '

[C'1€T,, 110y
In fact, for [C'] € T, ;1 N Oy, every element in C' \ L" can be written in form
exp(;—: Epa;) [Ep+y-Hp+ (-v%¢c) “E_,]
for some 0 # y € C and u € C, hence we have
{[E,+y-H,+(-y°c) - E_p,+u-Epq, +(yuN)-E_o, ]:yeC,ueC}= U o~z
[C"]€Ts, 111N Oy

and it is contained in Zy; nP(a). If y = 0, then

(B, +y-Hy,+(-y’c) - E_p+u-E, o, +(yuN) -E_o, 1=[E,+u-E,o, ]€L,

hence
(z#0)nZgnP(a) = U (C'~L"YuL.
[C']eT,, 11N0Oy
Therefore
ZgnP(a) = U C'uLul'= |y C.
[C']eTs, 1110 [C"]eTo, 1

It is remained to describe P(a) n Z; as a cubic scroll. Consider an isomorphism

[:L-C, [ Epa,, +82N-E o, |~ [s2- E,+s182-Hp,+ (-s3¢) - E_,].
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Then for s =[s1 “Epq;, + 52N - E—%o]’ we have

P(Ep-a;, +yN-E_o, , E,+y-Hy+ (-y°c)-E_,) (s1#0,y:=s2/51)

P(E-a,. E-,)(= L") (51 =0).

Xjg

Ls=P(s, f(s)) ={

In particular, L, , 1=Land Lig_, 7=L". Thus
J0 Jo
U Lin(z=0)=L'0uL"=ZznP(a)n(xz=0)
sel’

and

LZJ:,LS n(x#0)= U(CE[EP*%'OW'E*%‘O] N(z#0)=2ZsnP(a)n (z#0).
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